Daniel J. Duffy - Numerical Methods in Computational Finance

Здесь есть возможность читать онлайн «Daniel J. Duffy - Numerical Methods in Computational Finance» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: unrecognised, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Numerical Methods in Computational Finance: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Numerical Methods in Computational Finance»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

This book is a detailed and step-by-step introduction to the mathematical foundations of ordinary and partial differential equations, their approximation by the finite difference method and applications to computational finance. The book is structured so that it can be read by beginners, novices and expert users.
Part A Mathematical Foundation for One-Factor Problems
Chapters 1 to 7 introduce the mathematical and numerical analysis concepts that are needed to understand the finite difference method and its application to computational finance.
Part B Mathematical Foundation for Two-Factor Problems
Chapters 8 to 13 discuss a number of rigorous mathematical techniques relating to elliptic and parabolic partial differential equations in two space variables. In particular, we develop strategies to preprocess and modify a PDE before we approximate it by the finite difference method, thus avoiding ad-hoc and heuristic tricks.
Part C The Foundations of the Finite Difference Method (FDM)
Chapters 14 to 17 introduce the mathematical background to the finite difference method for initial boundary value problems for parabolic PDEs. It encapsulates all the background information to construct stable and accurate finite difference schemes.
Part D Advanced Finite Difference Schemes for Two-Factor Problems
Chapters 18 to 22 introduce a number of modern finite difference methods to approximate the solution of two factor partial differential equations. This is the only book we know of that discusses these methods in any detail.
Part E Test Cases in Computational Finance
Chapters 23 to 26 are concerned with applications based on previous chapters. We discuss finite difference schemes for a wide range of one-factor and two-factor problems.
This book is suitable as an entry-level introduction as well as a detailed treatment of modern methods as used by industry quants and MSc/MFE students in finance. The topics have applications to numerical analysis, science and engineering.
More on computational finance and the author’s online courses, see www.datasim.nl.

Numerical Methods in Computational Finance — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Numerical Methods in Computational Finance», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

We say that two vectors x and y are orthogonal if We immediately see that the zero vector is orthogonal to every other vector - фото 632. We immediately see that the zero vector is orthogonal to every other vector. Another example is Numerical Methods in Computational Finance - изображение 633; then Numerical Methods in Computational Finance - изображение 634.

Definition 5.4The set Numerical Methods in Computational Finance - изображение 635in an inner product space is orthonormal if:

(5.7) Finding an orthonormal set in an inner product space is analogous to choosing a - фото 636

Finding an orthonormal set in an inner product space is analogous to choosing a set of mutually perpendicular unit vectors in elementary vector analysis.

5.3.1 Orthonormal Basis

Let X be an inner product space. The set Numerical Methods in Computational Finance - изображение 637is orthonormal if Numerical Methods in Computational Finance - изображение 638for Numerical Methods in Computational Finance - изображение 639and Numerical Methods in Computational Finance - изображение 640for Numerical Methods in Computational Finance - изображение 641. The set Numerical Methods in Computational Finance - изображение 642is called an orthonormal basis .

Then The inner product space continuous functions has Orthnormal basis - фото 643.

The inner product space картинка 644(continuous functions) has:

Orthnormal basis .

Orthogonality because .

An interesting application of inner products is to kernel theory to statistical learning in Learning with Kernels , Schölkopf and Smola (2002). In this case we do not work in an original (let's say n -dimensional) space X but in a feature space H . To this end, consider the map:

(5.8) We embed data into H and this approach offers several advantages one of - фото 645

We embed data into H , and this approach offers several advantages, one of which is that we can define a similarity measure from the inner product in H :

(5.9) The function is called a kernel 54 FROM VECTOR SPACES TO MATRICES We are - фото 646

The function картинка 647is called a kernel .

5.4 FROM VECTOR SPACES TO MATRICES

We are almost finished with our introduction to vector spaces and linear transformations. We now discuss how matrices arise and their relationship with the current topics.

We discuss the notion of a matrix for a linear transformation. To this end, consider the linear transformation Numerical Methods in Computational Finance - изображение 648where V and W are finite-dimensional vector spaces, and let Numerical Methods in Computational Finance - изображение 649and Numerical Methods in Computational Finance - изображение 650be bases in V and W , respectively. Then:

(5.10) for some scalars We can represent these scalars in rectangular form which we - фото 651

for some scalars We can represent these scalars in rectangular form which we call a matrix - фото 652. We can represent these scalars in rectangular form which we call a matrix:

(5.11) In this case we speak of a square matrix when otherwise it is called a - фото 653

In this case we speak of a square matrix when картинка 654otherwise, it is called a rectangular matrix . In short, each linear transformation determines a unique картинка 655matrix with respect to the basis functions. Conversely, every such matrix determines a unique linear transformation from V to W defined by Equation (5.10)and the following mapping for a general vector 512 541 Some Examples We take simple twodimensional problems to - фото 656:

(5.12) 541 Some Examples We take simple twodimensional problems to model - фото 657

5.4.1 Some Examples

We take simple two-dimensional problems to model reflection and (counterclockwise) rotation in the plane.

Case 1:(5.3)

Case 2:From (5.10)we getwhich allows us to find the matrix A.

Case 3:The trick is to build the matrix column by column, from top to bottom.

5.5 FUNDAMENTAL MATRIX PROPERTIES

We first give a short history of how matrices were discovered.

The term matrix was introduced by the 19th-century English mathematician James Sylvester, but it was his friend the mathematician Arthur Cayley who developed the algebraic aspect of matrices in two papers in the 1850s. Cayley first applied them to the study of systems of linear equations, where they are still very useful. They are also important because, as Cayley recognised, certain sets of matrices form algebraic systems in which many of the ordinary laws of arithmetic (e.g., the associative and distributive laws) are valid but in which other laws (for example, the commutative law) are not valid. (Wikipedia)

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Numerical Methods in Computational Finance»

Представляем Вашему вниманию похожие книги на «Numerical Methods in Computational Finance» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Numerical Methods in Computational Finance»

Обсуждение, отзывы о книге «Numerical Methods in Computational Finance» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x