Daniel J. Duffy - Numerical Methods in Computational Finance

Здесь есть возможность читать онлайн «Daniel J. Duffy - Numerical Methods in Computational Finance» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: unrecognised, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Numerical Methods in Computational Finance: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Numerical Methods in Computational Finance»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

This book is a detailed and step-by-step introduction to the mathematical foundations of ordinary and partial differential equations, their approximation by the finite difference method and applications to computational finance. The book is structured so that it can be read by beginners, novices and expert users.
Part A Mathematical Foundation for One-Factor Problems
Chapters 1 to 7 introduce the mathematical and numerical analysis concepts that are needed to understand the finite difference method and its application to computational finance.
Part B Mathematical Foundation for Two-Factor Problems
Chapters 8 to 13 discuss a number of rigorous mathematical techniques relating to elliptic and parabolic partial differential equations in two space variables. In particular, we develop strategies to preprocess and modify a PDE before we approximate it by the finite difference method, thus avoiding ad-hoc and heuristic tricks.
Part C The Foundations of the Finite Difference Method (FDM)
Chapters 14 to 17 introduce the mathematical background to the finite difference method for initial boundary value problems for parabolic PDEs. It encapsulates all the background information to construct stable and accurate finite difference schemes.
Part D Advanced Finite Difference Schemes for Two-Factor Problems
Chapters 18 to 22 introduce a number of modern finite difference methods to approximate the solution of two factor partial differential equations. This is the only book we know of that discusses these methods in any detail.
Part E Test Cases in Computational Finance
Chapters 23 to 26 are concerned with applications based on previous chapters. We discuss finite difference schemes for a wide range of one-factor and two-factor problems.
This book is suitable as an entry-level introduction as well as a detailed treatment of modern methods as used by industry quants and MSc/MFE students in finance. The topics have applications to numerical analysis, science and engineering.
More on computational finance and the author’s online courses, see www.datasim.nl.

Numerical Methods in Computational Finance — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Numerical Methods in Computational Finance», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

A real square matrix Q is orthogonal if:

(5.17) Orthogonal matrices are important in numerical linear algebra applications - фото 684

Orthogonal matrices are important in numerical linear algebra applications because of their numeric stability properties. Some application areas are matrix decomposition methods (Golub and van Loan (1996)) such as:

QR decomposition orthogonal, upper triangular.

Singular Value Decomposition (SVD) and V orthogonal, diagonal matrix.

Eigendecomposition symmetric, Q orthogonal, diagonal.

Polar decomposition where is orthogonal, symmetric positive-semidefinite.

A particular application area is solving overdetermined systems of linear equations and solving ill-posed linear systems .

5.6.4 Positive Definite Matrices

This is another very important class of matrices. Matrices having this property are highly desirable in applications and algorithms. An matrix is positive definite if 518 and positiv - фото 685matrix is positive definite if 518 and positive semidefinite if 519 - фото 686is positive definite if:

(5.18) and positive semidefinite if 519 Some necessary conditions for positive - фото 687

and positive semidefinite if:

(5.19) Some necessary conditions for positive semidefiniteness are The diagonal - фото 688

Some necessary conditions for positive semidefiniteness are:

The diagonal elements of A must be positive.

A is positive definite if and only if all its eigenvalues are positive.

The element of A having the greatest absolute value must be on the diagonal of A.

An example of a positive definite matrix A is:

Numerical Methods in Computational Finance - изображение 689

To prove this let Numerical Methods in Computational Finance - изображение 690. Then

We can take the square root of a positive definite matrix A and it is a - фото 691

We can take the square root картинка 692of a positive definite matrix A , and it is a well-defined function. Furthermore, we can factor a positive definite matrix A into:

(5.20) картинка 693

where L is a lower triangular matrix having positive values on its diagonal. Equation (5.20)is called the Cholesky decomposition for A .

5.6.5 Non-Negative Matrices

A matrix A is non-negative (written картинка 694) if all its elements are real and non-negative. A matrix A is greater than a matrix B if картинка 695is positive. These kinds of matrices have many applications, for example Markov chains and stochastic matrix theory. They are also relevant when we construct monotone finite difference schemes and M -matrices to approximate the solution of differential equations, as we shall see later in this book.

5.6.6 Irreducible Matrices

A matrix A is said to be reducible if there exists a permutation matrix P such that:

The matrix A is called irreducible if no such permutation matrix exists The - фото 696

The matrix A is called irreducible if no such permutation matrix exists.

The matrix A is said to be diagonally dominant if:

(5.21) Some results that are used in PDE applications are 1 If A is strictly - фото 697

Some results that are used in PDE applications are:

1 If A is strictly diagonally dominant, then it is invertible.

2 If A is irreducible and diagonally dominant and if for at least one j, then A is invertible.

5.6.7 Other Kinds of Matrices

We conclude this section with a list of matrices whose properties are defined by the signs of their off-diagonal elements.

A Metzler matrix A satisfies Numerical Methods in Computational Finance - изображение 698where Numerical Methods in Computational Finance - изображение 699

A Z - matrix is a negated Metzler matrix Numerical Methods in Computational Finance - изображение 700where An M matrix is a Z matrix with eigenvalues whose real parts are - фото 701.

An M - matrix is a Z -matrix with eigenvalues whose real parts are non-negative. An M -matrix can be expressed in the form The scalar s is at least as large as the maximum of the moduli of the - фото 702. The scalar s is at least as large as the maximum of the moduli of the eigenvalues of B , and I is the identity matrix.

Some applications of M -matrices are from mathematics and economics, for example:

Establish bounds on eigenvalues.

Convergence criteria for iterative methods.

Discretisations of PDEs (for example, in combination with exponential fitting) and monotone finite difference schemes.

Finite Markov chains.

Population dynamics.

Finally, L - matrices are defined by: 57 THE CAYLEY TRANSFORM The Cayley Transform refers to a group of related - фото 703

5.7 THE CAYLEY TRANSFORM

The Cayley Transform refers to a group of related concepts. The relevance to our work is that it appears when proving the stability of finite difference schemes for two-factor option pricing problems as we shall discuss in Chapters 18, 22and 23. It has been applied in fixed-income pricing as discussed in Davidson and Levin (2014).

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Numerical Methods in Computational Finance»

Представляем Вашему вниманию похожие книги на «Numerical Methods in Computational Finance» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Numerical Methods in Computational Finance»

Обсуждение, отзывы о книге «Numerical Methods in Computational Finance» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x