Handbook of Aggregation-Induced Emission, Volume 1

Здесь есть возможность читать онлайн «Handbook of Aggregation-Induced Emission, Volume 1» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: unrecognised, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Handbook of Aggregation-Induced Emission, Volume 1: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Handbook of Aggregation-Induced Emission, Volume 1»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

The first volume of the ultimate reference on the science and applications of aggregation-induced emission  The Handbook of Aggregation-Induced Emission In this first volume of three, the editors survey the subject of aggregation-induced emission with a focus on the fundamentals of various branches of the discipline, such as crystallization-induced emission, room temperature phosphorescence, aggregation-induced delayed fluorescence, and more. This book covers the new properties of materials endowed by molecular aggregates. It also includes: 
A thorough introduction to the mechanistic understanding of the importance of molecular motion to aggregation-induced emission An exploration of the aggregation-induced emission mechanism at the molecular level Practical discussions of aggregation-induced emission from the restriction of double bond rotation at the excited state, and clusterization-triggered emission Perfect for academic researchers working on aggregation-induced emission, this set of volumes is also ideal for professionals and students in the fields of photophysics, photochemistry, materials science, optoelectronic materials, synthetic organic chemistry, macromolecular chemistry, polymer science, and biological sciences.

Handbook of Aggregation-Induced Emission, Volume 1 — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Handbook of Aggregation-Induced Emission, Volume 1», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать
Figure 34 Structure of DTFO DSFO and excimer of DSFO Baumgartner et al - фото 53

Figure 3.4 Structure of DTFO, DSFO, and excimer of DSFO.

Baumgartner et al. [27] synthesized a series of amphiphilic phosphonium compounds including DTP, which could form liquid crystalline and soft crystal phases in the solid state, emitting fluorescence 40 times stronger than its solution. It was found that DTP formed a folded conformation in solution in which the electron‐rich trialkoxybenzyl group was close to the electron‐deficient phospholium‐containing fused scaffold. In this closed structure, the photoinduced electron transfer (PET) process combined with phenyl rotation led to weak emission. In contrast, the solid DTP possessed an opened conformation with the trialkoxybenzyl ring pointed away from the main fused scaffold and the PET process disappeared. Therefore, DTP emitted a stronger fluorescence (see Figure 3.6).

Figure 35 Structure of CNTFMBE and CNDPDSB Figure 36 Structure of DTP - фото 54

Figure 3.5 Structure of CN‐TFMBE and CN‐DPDSB.

Figure 36 Structure of DTP and its PET process By crossdipole stacking - фото 55

Figure 3.6 Structure of DTP and its PET process.

By cross‐dipole stacking instead of H‐aggregation, stilbene derivatives trans ‐DPDSB without a cyano substituent could emit a strong blue fluorescence in the crystal state. It is considered that the cross‐dipole stacking of the trans ‐DPDSB molecules can increase a finite transition dipole moment between the ground state and the lowest excited state of the clusters, promoting the light‐emission properties [28]. Tian et al. [29] also found that a butterfly‐like molecule 9,10‐bis(2,2‐diphenylvinyl) anthracene (BDPVA) formed cross‐dipole stacking in the crystal state and emitted a stronger fluorescence in solid than in solution (see Figure 3.7).

In addition, molecular planarization is also one of possible AIE mechanisms. Park et al. [8] ever reported that 1‐cyano‐ trans ‐1,2‐bis‐(4′‐methylbiphenyl)‐ethylene (CN‐MBE) possessed a twisted structure so that it emitted no fluorescence in solution. However, in solid state, the twisted structure was stretched out to give a more coplanar structure, which was helpful for its J‐aggregation and showed a strong emission (see Figure 3.8).

Very specially, Zheng et al. [30] recently found that a totally planar molecule 5,7,12,14‐tetraoxapentacene (TOP) also displays the typical AIE effect. In highly polar solvent, TOP had no emission due to the solvation role but emitted a strong fluorescence in solid state because of the largely slipped ππ stacking. Although this molecule is planar, oxygen atoms on the different molecular planes prevented cofacial ππ stacking that can arouse ACQ result because of the repulsive force between oxygen atoms (see Figure 3.9).

Although these above AIE mechanisms can well explain the emission or emission enhancement of some special luminophores in solid state, they are not applicable for more extensive and typical AIEgens such as TPE and phenylsilole derivatives until the RIR mechanism was put forward by Tang et al. [12–17]. The RIR mechanism was first proposed to explain the AIE effect of silole derivatives such as HPS (see Figure 3.10). HPS is a typical AIE molecule. When HPS molecules are dissolved in a good solvent at low concentrations, fluorescent quantum yield of the solution is extremely low ( Φ f∼ 0.1%). However, the emission is dramatically enhanced after the fraction ( f w) of poor solvent such that water reaches ∼50 vol % and reaches a maximum of ∼22% at f w= 90 vol%, being approximately 220‐fold increase in fluorescence quantum yield. As shown in the molecular structure of HPS, the central silole is connected with six phenyl rings by rotatable single bonds, which make HPS to show a great conformational flexibility in isolated phase. Due to the six phenyl rings around a tiny core, the HPS molecular structure is rather distorted. This torsion makes a great tension between adjacent phenyl rings, and it is difficult for the entire molecule to form a planar conformation. It can be seen from the crystal structure that HPS molecules possess a propeller‐like conformation and each phenyl rings exhibit different degrees of distortion compared with the silole core. This nonplanar structure makes it difficult for molecules to pack tightly. Therefore, no ππ stacking interaction is observed for HPS in the solid state, avoiding the ACQ effect. Meanwhile, the dynamical rotation of six phenyl rings is restricted in the solid state and the nonradiative channel is blocked. Therefore, in aggregates, high emission is accessible.

Figure 37 Structure of DPDSB and BDPVA and their crossdipole stacking - фото 56

Figure 3.7 Structure of DPDSB and BDPVA and their cross‐dipole stacking.

Figure 38 Emission of CNMBE in the solid state by molecular coplanarization - фото 57

Figure 3.8 Emission of CN‐MBE in the solid state by molecular coplanarization.

Source: Reproduced with permission from Ref [8]. Copyright 2002, American Chemical Society.

Figure 39 Molecular structure and crystal structure of TOP viewed a - фото 58

Figure 3.9 Molecular structure and crystal structure of TOP viewed (a) perpendicular to the molecular plane and (b) along the molecular plane; (c) the slipped ππ packing of the molecules.

Figure 310 a Fluorescence quantum yield of HPS vs water fraction in - фото 59

Figure 3.10 (a) Fluorescence quantum yield of HPS vs water fraction in acetone/water.

Source: Reproduced with permission from Ref. [11]. Copyright 2003, American Chemical Society.

(b) Molecular conformation of HPS.

Source: Reproduced with permission from Ref. [12]. Copyright 2015, American Chemical Society.

(c) HPS molecule emission.

Source: Reproduced with permission from Ref. [15]. Copyright 2015, Royal Society of Chemistry.

However, it is found that some luminophores lack substituents that can rotate but display typical AIE phenomenon. For example, annulenylidene THBA (see Figure 3.11a), whose phenyl rings are fixed by a pair of ethylene tethers, still exhibits strong emission in aggregates but no emission in dilute solution [12, 31, 32]. Consequently, the RIV mechanism is raised. For this class of luminophores, intramolecular vibration instead of rotation is restricted in the aggregated state, which turns on the luminescence. Recently, Tang et al. reported cyclooctatetrathiophene (COTh) and its derivatives that are AIE active [33]. There are no rotatable unit in the molecular structure of COTh (see Figure 3.11b) in both ground and excited states. However, in solution, the intramolecular vibration of excited state could cause up‐down conformation inversion and result in a fluorescent quenching. Because of the RIV mechanism, COTh emits a strong green fluorescence in the solid state.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Handbook of Aggregation-Induced Emission, Volume 1»

Представляем Вашему вниманию похожие книги на «Handbook of Aggregation-Induced Emission, Volume 1» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Handbook of Aggregation-Induced Emission, Volume 1»

Обсуждение, отзывы о книге «Handbook of Aggregation-Induced Emission, Volume 1» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x