Handbook of Aggregation-Induced Emission, Volume 1

Здесь есть возможность читать онлайн «Handbook of Aggregation-Induced Emission, Volume 1» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: unrecognised, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Handbook of Aggregation-Induced Emission, Volume 1: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Handbook of Aggregation-Induced Emission, Volume 1»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

The first volume of the ultimate reference on the science and applications of aggregation-induced emission  The Handbook of Aggregation-Induced Emission In this first volume of three, the editors survey the subject of aggregation-induced emission with a focus on the fundamentals of various branches of the discipline, such as crystallization-induced emission, room temperature phosphorescence, aggregation-induced delayed fluorescence, and more. This book covers the new properties of materials endowed by molecular aggregates. It also includes: 
A thorough introduction to the mechanistic understanding of the importance of molecular motion to aggregation-induced emission An exploration of the aggregation-induced emission mechanism at the molecular level Practical discussions of aggregation-induced emission from the restriction of double bond rotation at the excited state, and clusterization-triggered emission Perfect for academic researchers working on aggregation-induced emission, this set of volumes is also ideal for professionals and students in the fields of photophysics, photochemistry, materials science, optoelectronic materials, synthetic organic chemistry, macromolecular chemistry, polymer science, and biological sciences.

Handbook of Aggregation-Induced Emission, Volume 1 — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Handbook of Aggregation-Induced Emission, Volume 1», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

50 50 Romanov, A. S.; Di, D.; Yang, L.; Fernandez‐Cestau, J.; Becker, C. R.; James, C. E.; Zhu, B.; Linnolahti, M.; Credgington, D.; Bochmann, M. (2016). Highly photoluminescent copper carbene complexes based on prompt rather than delayed fluorescence. Chem. Commun. 52 (38), 6379–6382.

51 51 Karadakov, P. B. (2008). Aromaticity and antiaromaticity in the low‐lying electronic states of cyclooctatetraene. J. Phys. Chem. A 112 (49), 12707–12713.

52 52 Feixas, F.; Vandenbussche, J.; Bultinck, P.; Matito, E.; Solà, M. (2011). Electron delocalization and aromaticity in low‐lying excited states of archetypal organic compounds. Phys. Chem. Chem. Phys. 13 (46), 20690–20703.

53 53 Gogonea, V.; Schleyer, P. v. R.; Schreiner, P. R. (1998). Consequences of triplet aromaticity in 4nπ‐electron annulenes: calculation of magnetic shieldings for open‐shell species. Angew. Chem. Int. Ed. 37 (13‐14), 1945–1948.

54 54 Dong, Y.; Xu, B.; Zhang, J.; Lu, H.; Wen, S.; Chen, F.; He, J.; Li, B.; Ye, L.; Tian, W. (2012). Supramolecular interactions induced fluorescent organic nanowires with high quantum yield based on 9,10‐distyrylanthracene. CrystEngComm 14 (20), 6593–6598.

55 55 Qin, A.; Lam, J. W. Y.; Mahtab, F.; Jim, C. K. W.; Tang, L.; Sun, J.; Sung, H. H. Y.; Williams, I. D.; Tang, B. Z. (2009). Pyrazine luminogens with “free” and “locked” phenyl rings: understanding of restriction of intramolecular rotation as a cause for aggregation‐induced emission. Appl. Phys. Lett. 94 (25), 253308.

56 56 Chen, J.; Xu, B.; Ouyang, X.; Tang, B. Z.; Cao, Y. (2004). Aggregation‐induced emission of cis,cis‐1,2,3,4‐tetraphenylbutadiene from restricted intramolecular rotation. J. Phys. Chem. A 108 (37), 7522–7526.

57 57 Wu, Q.; Zhang, T.; Peng, Q.; Wang, D.; Shuai, Z. (2014). Aggregation induced blue‐shifted emission ‐ the molecular picture from a QM/MM study. Phys. Chem. Chem. Phys. 16 (12), 5545–5552.

58 58 Heller, E. J.; Sundberg, R.; Tannor, D. (1982). Simple aspects of Raman scattering. J. Phys. Chem. 86 (10), 1822–1833.

59 59 Santoro, F.; Cappelli, C.; Barone, V. (2011). Effective time‐independent calculations of vibrational resonance Raman spectra of isolated and solvated molecules including Duschinsky and Herzberg–Teller effects. J. Chem. Theory Comput. 7 (6), 1824–1839.

60 60 Dong, Y.; Lam, J. W. Y.; Qin, A.; Sun, J.; Liu, J.; Li, Z.; Sun, J.; Sung, H. H. Y.; Williams, I. D.; Kwok, H. S.; Tang, B. Z. (2007). Aggregation‐induced and crystallization‐enhanced emissions of 1,2‐diphenyl‐3,4‐bis(diphenylmethylene)‐1‐cyclobutene. Chem. Commun. ( 31), 3255–3257.

61 61 Zhang, T.; Ma, H.; Niu, Y.; Li, W.; Wang, D.; Peng, Q.; Shuai, Z.; Liang, W. (2015). Spectroscopic signature of the aggregation‐induced emission phenomena caused by restricted nonradiative decay: a theoretical proposal. J. Phys. Chem. C 119 (9), 5040–5047.

62 62 Lin, S. H.; Bersohn, R. (1968). Effect of partial deuteration and temperature on triplet‐state lifetimes. J. Chem. Phys. 48 (6), 2732–2736.

63 63 Saltiel, J.; Waller, A. S.; Sears, D. F.; Garrett, C. Z. (1993). Fluorescence quantum yields of trans‐stilbene‐d0 and ‐d2 in n‐hexane and n‐tetradecane: medium and deuterium isotope effects on decay processes. J. Phys. Chem. 97 (11), 2516–2522.

64 64 Zhang, T.; Peng, Q.; Quan, C.; Nie, H.; Niu, Y.; Xie, Y.; Zhao, Z.; Tang, B. Z.; Shuai, Z. (2016). Using the isotope effect to probe an aggregation induced emission mechanism: theoretical prediction and experimental validation. Chem. Sci. 7 (8), 5573–5580.

65 65 Chen, J.; Xu, B.; Yang, K.; Cao, Y.; Sung, H. H. Y.; Williams, I. D.; Tang, B. Z. (2005). Photoluminescence spectral reliance on aggregation order of 1,1‐bis(2′‐thienyl)‐2,3,4,5‐tetraphenylsilole. J. Phys. Chem. B 109 (36), 17086–17093.

66 66 Zhang, X.; Sørensen, J. K.; Fu, X.; Zhen, Y.; Zhao, G.; Jiang, L.; Dong, H.; Liu, J.; Shuai, Z.; Geng, H.; Bjørnholm, T.; Hu, W. (2014). Rubrene analogues with the aggregation‐induced emission enhancement behaviour. J. Mater. Chem. C 2 (5), 884–890.

67 67 Yoshiharu, N.; Chitoshi, K.; Hiroyuki, K.; Takeshi, K. (2011). Diacenaphtho[1,2‐b;1′,2′‐d]silole and ‐pyrrole. Chem. Lett. 40 (12), 1437–1439.

68 68 Katoh, R.; Suzuki, K.; Furube, A.; Kotani, M.; Tokumaru, K. (2009). Fluorescence quantum yield of aromatic hydrocarbon crystals. J. Phys. Chem. C 113 (7), 2961–2965.

69 69 Varghese, S.; Park, S. K.; Casado, S.; Fischer, R. C.; Resel, R.; Milián‐Medina, B.; Wannemacher, R.; Park, S. Y.; Gierschner, J. (2013). Stimulated emission properties of sterically modified distyrylbenzene‐based H‐aggregate single crystals. J. Phys. Chem. Lett. 4 (10), 1597–1602.

70 70 Zheng, X.; Peng, Q.; Zhu, L.; Xie, Y.; Huang, X.; Shuai, Z. (2016). Unraveling the aggregation effect on amorphous phase AIE luminogens: a computational study. Nanoscale 8, 15173–15180.

71 71 Fan, X.; Sun, J.; Wang, F.; Chu, Z.; Wang, P.; Dong, Y.; Hu, R.; Tang, B. Z.; Zou, D. (2008). Photoluminescence and electroluminescence of hexaphenylsilole are enhanced by pressurization in the solid state. Chem. Commun. (26), 2989–2991.

72 72 Gu, Y.; Wang, K.; Dai, Y.; Xiao, G.; Ma, Y.; Qiao, Y.; Zou, B. (2017). Pressure‐induced emission enhancement of carbazole: the restriction of intramolecular vibration. J. Phys. Chem. Lett. 8 (17), 4191–4196.

73 73 Yuan, H.; Wang, K.; Yang, K.; Liu, B.; Zou, B. (2014). Luminescence properties of compressed tetraphenylethene: the role of intermolecular interactions. J. Phys. Chem. Lett. 5 (17), 2968–2973.

74 74 Zhang, T.; Shi, W.; Wang, D.; Zhuo, S.; Peng, Q.; Shuai, Z. (2018). Pressure‐induced emission enhancement in hexaphenylsilole: a computational study. J. Mater. Chem. C 7, 1388–1398.

75 75 Wang, D.; Su, H.; Kwok, R. T. K.; Hu, X.; Zou, H.; Luo, Q.; Lee, M. S.; Xu, W.; Lam, J. W. Y.; Tang, B. Z. (2018). Rational design of a water‐soluble NIR AIEgen, and its application in ultrafast wash‐free cellular imaging and photodynamic cancer cell ablation. Chem. Sci. 9, 3685–3693.

76 76 Wang, D.; Lee, M. M. S.; Shan, G.; Kwok, R. T. K.; Lam, J. W. Y.; Su, H.; Cai, Y.; Tang, B. Z. (2018). Highly efficient photosensitizers with far‐red/near‐infrared aggregation‐induced emission for in vitro and in vivo cancer theranostics. Adv. Mater. 30, 1802105.

77 77 Zheng, X.; Wang, D.; Xu, W.; Cao, S.; Peng, Q.; Tang, B. Z. (2019). Charge control of fluorescent probes to selectively target the cell membrane or mitochondria: theoretical prediction and experimental validation. Mater. Horiz. 6, 2016–2023.

78 78 Shuai, Z.; Xu, W.; Peng, Q.; Geng, H. (2013). From electronic excited state theory to the property predictions of organic optoelectronic materials. Sci. China Chem. 56 (9), 1277–1284.

79 79 Li, W.; Zhu, L.; Shi, Q.; Ren, J.; Peng, Q.; Shuai, Z. (2017). Excitonic coupling effect on the nonradiative decay rate in molecular aggregates: formalism and application. Chem. Phys. Lett. 683, 507–514.

80 80 Li, W.; Peng, Q.; Xie, Y.; Zhang, T.; Shuai, Z. (2016). Effect of intermolecular excited‐state interaction on vibrationally resolved optical spectra in organic molecular aggregates. Acta Chim. Sinica 74 (11), 902–909.

3 Aggregation‐induced Emission from the Restriction of Double Bond Rotation at the Excited State

Ming Hu and Yan-Song Zheng

Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, China

3.1 Introduction

In the whole history of human being, mankind is being dependent on light, from natural sunlight, flame light, incandescent lamp, to light‐emitting diode (LED). While light has become an integral part of human civilization, it is far away from fully understanding the light. Luminescence, a class of light emitted by luminophoric molecules and called as “cold” light unlike sunlight and torch light, not only can light up macroscopic space but can also help us to see the microscopic species such as cell and protein. Therefore, luminescence is a cutting‐edge research field in chemistry, materials, and biology. Countless chemists are committed to the design and preparation of new luminescence materials and their applicational development and mechanistic disclosure and have made a huge contribution to the progress of the scientific community.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Handbook of Aggregation-Induced Emission, Volume 1»

Представляем Вашему вниманию похожие книги на «Handbook of Aggregation-Induced Emission, Volume 1» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Handbook of Aggregation-Induced Emission, Volume 1»

Обсуждение, отзывы о книге «Handbook of Aggregation-Induced Emission, Volume 1» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x