Flow-Induced Vibration Handbook for Nuclear and Process Equipment

Здесь есть возможность читать онлайн «Flow-Induced Vibration Handbook for Nuclear and Process Equipment» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: unrecognised, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Flow-Induced Vibration Handbook for Nuclear and Process Equipment: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Flow-Induced Vibration Handbook for Nuclear and Process Equipment»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Explains the mechanisms governing flow-induced vibrations and helps engineers prevent fatigue and fretting-wear damage at the design stage  Fatigue or fretting-wear damage in process and plant equipment caused by flow-induced vibration can lead to operational disruptions, lost production, and expensive repairs. Mechanical engineers can help prevent or mitigate these problems during the design phase of high capital cost plants such as nuclear power stations and petroleum refineries by performing thorough flow-induced vibration analysis. Accordingly, it is critical for mechanical engineers to have a firm understanding of the dynamic parameters and the vibration excitation mechanisms that govern flow-induced vibration. 
Flow-Induced Vibration Handbook for Nuclear and Process Equipment  Helps readers understand and apply techniques for preventing fatigue and fretting-wear damage due to flow-induced vibration at the design stage Covers components including nuclear reactor internals, nuclear fuels, piping systems, and various types of heat exchangers Features examples of vibration-related failures caused by fatigue or fretting-wear in nuclear and process equipment Includes a detailed overview of state-of-the-art flow-induced vibration technology with an emphasis on two-phase flow-induced vibration Covering all relevant aspects of flow-induced vibration technology, 
 is required reading for professional mechanical engineers and researchers working in the nuclear, petrochemical, aerospace, and process industries, as well as graduate students in mechanical engineering courses on flow-induced vibration.

Flow-Induced Vibration Handbook for Nuclear and Process Equipment — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Flow-Induced Vibration Handbook for Nuclear and Process Equipment», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Table of Contents

1 Cover

2 Series Page

3 Title Page

4 Copyright Page

5 Preface

6 Acknowledgments

7 Contributors

8 1 Introduction and Typical Vibration Problems 1.1 Introduction 1.2 Some Typical Component Failures 1.3 Dynamics of Process System Components References

9 2 Flow‐Induced Vibration of Nuclear and Process Equipment: An Overview 2.1 Introduction 2.2 Flow Calculations 2.3 Dynamic Parameters 2.4 Vibration Excitation Mechanisms 2.5 Vibration Response Prediction 2.6 Fretting‐Wear Damage Considerations 2.7 Acceptance Criteria References

10 3 Flow Considerations 3.1 Definition of the Problem 3.2 Nature of the Flow 3.3 Simplified Flow Calculation 3.4 Multi-Dimensional Thermalhydraulic Analysis Acronyms Subscripts References

11 4 Hydrodynamic Mass, Natural Frequencies and Mode Shapes 4.1 Introduction 4.2 Total Tube Mass 4.3 Free Vibration Analysis of Straight Tubes 4.4 Basic Theory for Curved Tubes 4.5 Free Vibration Analysis of U‐Tubes 4.6 Concluding Remarks References

12 5 Damping of Cylindrical Structures in Single‐Phase Fluids 5.1 Introduction 5.2 Energy Dissipation Mechanisms 5.3 Approach 5.4 Damping in Gases 5.5 Design Recommendations for Damping in Gases 5.6 Damping in Liquids 5.7 Discussion 5.8 Design Recommendations for Damping in Liquids Nomenclature Subscript References

13 6 Damping of Cylindrical Structures in Two‐Phase Flow 6.1 Introduction 6.2 Sources of Information 6.3 Approach 6.4 Two‐Phase Flow Conditions 6.5 Parametric Dependence Study 6.6 Development of Design Guidelines 6.7 Discussion 6.8 Summary Remarks References

14 7 Fluidelastic Instability of Tube Bundles in Single‐Phase Flow 7.1 Introduction 7.2 Nature of Fluidelastic Instability 7.3 Fluidelastic Instability: Analytical Modelling 7.4 Fluidelastic Instability: Semi‐Empirical Models 7.5 Approach 7.6 Important Definitions 7.7 Parametric Dependence Study 7.8 Development of Design Guidelines 7.9 In‐Plane Fluidelastic Instability 7.10 Axial Flow Fluidelastic Instability 7.11 Concluding Remarks References

15 8 Fluidelastic Instability of Tube Bundles in Two‐Phase Flow 8.1 Introduction 8.2 Previous Research 8.3 Fluidelastic Instability Mechanisms in Two‐Phase Cross Flow 8.4 Fluidelastic Instability Experiments in Air‐Water Cross Flow 8.5 Analysis of the Fluidelastic Instability Results 8.6 Tube Bundle Vibration in Two‐Phase Freon Cross Flow 8.7 Freon Test Results and Discussion 8.8 Fluidelastic Instability of U‐Tubes in Air‐Water Cross Flow 8.9 In‐Plane (In‐Flow) Fluidelastic Instability 8.10 Design Recommendations 8.11 Fluidelastic Instability in Two‐Phase Axial Flow 8.12 Concluding Remarks References

16 9 Random Turbulence Excitation in Single‐Phase Flow 9.1 Introduction 9.2 Theoretical Background 9.3 Literature Search 9.4 Approach Taken 9.5 Discussion of Parameters 9.6 Design Guidelines 9.7 Random Turbulence Excitation in Axial Flow References

17 10 Random Turbulence Excitation Forces Due to Two-Phase Flow 10.1 Introduction 10.2 Background 10.3 Approach Taken to Data Reduction 10.4 Scaling Factor for Frequency 10.5 Scaling Factor for Power Spectral Density 10.6 Dimensionless Power Spectral Density 10.7 Upper Bounds for Two-Phase Cross Flow Dimensionless Spectra 10.8 Axial Flow Random Turbulence Excitation 10.9 Conclusions References

18 11 Periodic Wake Shedding and Acoustic Resonance 11.1 Introduction 11.2 Periodic Wake Shedding 11.3 Acoustic Resonance 11.4 Conclusions and Recommendations References

19 12 Assessment of Fretting‐Wear Damage in Nuclear and Process Equipment 12.1 Introduction 12.2 Dynamic Characteristics of Nuclear Structures and Process Equipment 12.3 Fretting‐Wear Damage Prediction 12.4 Work‐Rate Relationships 12.5 Experimental Verification 12.6 Comparison to Time‐Domain Approach 12.7 Practical Applications: Examples 12.8 Concluding Remarks References

20 13 Fretting‐Wear Damage Coefficients 13.1 Introduction 13.2 Fretting‐Wear Damage Mechanisms 13.3 Experimental Considerations 13.4 Fretting Wear of Zirconium Alloys 13.5 Fretting Wear of Heat Exchanger Materials 13.6 Summary and Recommendations References

21 Appendix A: Component AnalysisA.1 Introduction A.2 Analysis of a Process Heat Exchanger A.3 Analysis of a Nuclear Steam Generator U‐Bend

22 Subject Index

23 End User License Agreement

List of Tables

1 Chapter 3 Table 3-1 Physical Properties of Freon-22, Freon-134a, Air-Water, and Steam-... Table 3-2 Example 3-3 - Shell-Side Process Conditions and Geometry. Table 3-3 Example 3-3 – Path Lengths and Flow Areas. Table 3-4 Example 3-3 - Tube Bundle and Device Form Loss Factors. Table 3-5 Example 3-3 – Results.

2 Chapter 4Table 4-1 Schematic Representation of Eigenvalue Matrix Elements for Four Sp...

3 Chapter 5Table 5-1 Damping in Tube‐to‐Tubesheet Joints (Pettigrew et al, 1986a).Table 5-2 Sample Database Page on Heat Exchanger Tube Damping in Liquids (Mo...

4 Chapter 6Table 6-1 Sample Page of Two‐Phase Damping Database.Table 6-2 Experimental Conditions of Test Configurations.

5 Chapter 7Table 7-1 Typical Fluidelastic Instability Models and Suggested Design Guide...Table 7-2 Summary of References and Tube Bundle Geometries (Pettigrew and Ta...Table 7-3 Database on Fluidelastic Instability of Tube Bundles in Single‐Pha...Table 7-4 Summary of In‐Plane Instability Results (Mureithi et al, 2005)

6 Chapter 8Table 8-1 Physical Properties of Freon‐22, Freon‐134a, Air‐Water and Steam‐W...Table 8-2 Summary of Test Conditions and Results for Early Air‐Water Experim...Table 8-3 Summary of Test Conditions and Results for Damping in Rigid Bundle...Table 8-4 Summary of Test Conditions and FEI Results from Other Researchers ...Table 8-5 Summary of Freon Test Conditions and Results.Table 8-6 Summary of Air‐Water Test Conditions and Results (Violette, 2005).

7 Chapter 9Table 9-1 Modal Factor (a 1) and Mode Shape ( ϕ 1 max) 2Constants for Mode...Table 9-2 Summary of Bundle Geometries.

8 Chapter 10Table 10-1 Tube Bundle Geometries from CENS and CRL.

9 Chapter 11Table 11-1 Liquid Periodic Force Coefficients (Pettigrew and Gorman, 1978).Table 11-2 Dynamic Lift Coefficients for Tube Bundles.Table 11-3 Single and Two‐Phase Periodic Wake Shedding: Dynamic Coefficients...Table 11-4 Two‐Phase Flow Periodic‐Wake‐Shedding Lift Forces in Tube Array T...Table 11-5 Two‐Phase Flow Periodic Wake Shedding Lift Forces in Tube Array T...

10 Chapter 13Table 13-1 Ko’s Short‐Term Relative Fretting‐Wear Data (Ko, 1984).Table 13-2 Short‐Term Fretting‐Wear Data for Incoloy 800 Tubing and Type 410...

List of Illustrations

1 Chapter 1 Fig. 1-1 Tube‐to‐Tube Fretting Wear in the U‐Bend Region of an Early Nuclear... Fig. 1-2 Tube‐to‐Support Fretting Wear: Note Hole Through Tube Wall (Pettigr... Fig. 1-3 Fretting Wear in the Inlet Region of a Liquid Process Heat Exchange... Fig. 1-4 Fretting Wear Through Tube Wall at a Lacing Strip Location in a Pro... Fig. 1-5 Fretting Wear of Process Heat Exchanger: Repair (Pettigrew and Camp... Fig. 1-6 Fatigue Failure of a Titanium Tube in a Nuclear Power Plant Condens... Fig. 1-7 Tube‐to‐Tube Fretting Wear in a Power Plant Condenser. Fig. 1-8 Fretting Wear of a Gas Heat Exchanger Tube at a Baffle Edge Locatio... Fig. 1-9 Fretting‐Wear Damage on Nuclear Fuel (Hot Cell Examination) (Pettig... Fig. 1-10 Schematic Drawing of CANDU‐PHW ®Reactor (Pettigrew, 1978 / wi... Fig. 1-11 a) Control Absorber Guide Tube Vibration due to Jetting, b) Modifi... Fig. 1-12 Multi‐Span Heat Exchanger Tube with N Spans and N‐1 Clearance Supp...

2 Chapter 2 Fig. 2-1 Flow‐Path Approach. Fig. 2-2 Thermalhydraulic Analysis: Axial Grid Layout for a Typical Steam Ge.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Flow-Induced Vibration Handbook for Nuclear and Process Equipment»

Представляем Вашему вниманию похожие книги на «Flow-Induced Vibration Handbook for Nuclear and Process Equipment» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Flow-Induced Vibration Handbook for Nuclear and Process Equipment»

Обсуждение, отзывы о книге «Flow-Induced Vibration Handbook for Nuclear and Process Equipment» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x