Flow-Induced Vibration Handbook for Nuclear and Process Equipment

Здесь есть возможность читать онлайн «Flow-Induced Vibration Handbook for Nuclear and Process Equipment» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: unrecognised, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Flow-Induced Vibration Handbook for Nuclear and Process Equipment: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Flow-Induced Vibration Handbook for Nuclear and Process Equipment»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Explains the mechanisms governing flow-induced vibrations and helps engineers prevent fatigue and fretting-wear damage at the design stage  Fatigue or fretting-wear damage in process and plant equipment caused by flow-induced vibration can lead to operational disruptions, lost production, and expensive repairs. Mechanical engineers can help prevent or mitigate these problems during the design phase of high capital cost plants such as nuclear power stations and petroleum refineries by performing thorough flow-induced vibration analysis. Accordingly, it is critical for mechanical engineers to have a firm understanding of the dynamic parameters and the vibration excitation mechanisms that govern flow-induced vibration. 
Flow-Induced Vibration Handbook for Nuclear and Process Equipment  Helps readers understand and apply techniques for preventing fatigue and fretting-wear damage due to flow-induced vibration at the design stage Covers components including nuclear reactor internals, nuclear fuels, piping systems, and various types of heat exchangers Features examples of vibration-related failures caused by fatigue or fretting-wear in nuclear and process equipment Includes a detailed overview of state-of-the-art flow-induced vibration technology with an emphasis on two-phase flow-induced vibration Covering all relevant aspects of flow-induced vibration technology, 
 is required reading for professional mechanical engineers and researchers working in the nuclear, petrochemical, aerospace, and process industries, as well as graduate students in mechanical engineering courses on flow-induced vibration.

Flow-Induced Vibration Handbook for Nuclear and Process Equipment — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Flow-Induced Vibration Handbook for Nuclear and Process Equipment», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать
.. Fig. 2-3 Flow Velocity Vectors in the Central Plane of a Typical Steam Gener... Fig. 2-4 Gap Cross‐Flow Distribution Along a Typical Condenser Tube. Fig. 2-5 Flow Pattern Map for Two‐Phase Flow Across Cylinder Arrays Using Fl... Fig. 2-6 Hydrodynamic Mass in Two‐Phase Cross Flow: Comparison Between Theor... Fig. 2-7 Viscous Damping Data for a Cylinder in Unconfined and Confined Liqu... Fig. 2-8 Damping Data for Multi‐Span Heat Exchanger Tubes in Water. Fig. 2-9 Comparison Between Tube Support Damping Model (Squeeze‐Film and Fri... Fig. 2-10 Comparison Between Proposed Design Guideline and Available Damping... Fig. 2-11 Summary of Fluidelastic Instability Data for Single‐Phase Cross Fl... Fig. 2-12 Fluidelastic Instability Data in Two‐Phase Cross Flow. Fig. 2-13 Effect of P/D on Fluidelastic Instability Constant in Two‐Phase Cr... Fig. 2-14 Proposed Guideline for Single‐Phase Random Excitation Forces (Refe... Fig. 2-15 Proposed Guideline for Two‐Phase Random Excitation Forces In Churn... Fig. 2-16 Strouhal Numbers for Tube Bundles in Liquid Cross Flow: a) Normal ... Fig. 2-17 Fluctuating Force Coefficients for Tube Bundles in Single‐Phase Cr... Fig. 2-18 Fluctuating Force Coefficients for Tube Bundles in Two‐Phase Cross... Fig. 2-19 Proposed Damping Criteria (Resonance Parameter) for: a) In‐Line (S... Fig. 2-20 Flow Velocities, Support Locations and Tube Geometry for a Typical... Fig. 2-21 Example of Heat Exchanger Tube Vibration Analysis: Input of Vibrat... Fig. 2-22 Heat Exchanger Tube Vibration: Typical Free Vibration Analysis Res... Fig. 2-23 Vibration Mode Shapes and Vibration Analysis Results for a Typical...

3 Chapter 3 Fig. 3-1 Pressurised Water Reactor Vessel and Internals (Axisa, 1993). Fig. 3-2 Light-Water Boiling Reactor Pressure Vessel and Internals (Shumway,... Fig. 3-3a CANDU Heavy Water Reactor (Enhanced CANDU 6 Technical Summary, 200... Fig. 3-3b Schematic Diagram of CANDU Nuclear Power Station (Enhanced CANDU 6... Fig. 3-4 Schematic Diagram of Recirculating Steam Generator (Sauvé et al, 19... Fig. 3-5 Example 3-1 - Process Heat Exchanger Schematic. Fig. 3-6 Example 3-2 - U-Bend Schematic. Fig. 3-7 An Example of Power Spectral Density Curves of Turbulent Pressures ... Fig. 3-8 Flow Patterns in Vertical Channels. Fig. 3-9 Flow Pattern Map for Vertical Flow in Tubes with 1 to 3 cm Diameter... Fig. 3-10 Boundary-Layer and Wake Changes in the Flow Past a Cylinder as the... Fig. 3-11 Two-Phase Flow Patterns in Vertically Upwards and Horizontal Cross... Fig. 3-12 Flow Pattern Map for Two-Phase Flow Across Cylinder Arrays Using F... Fig. 3-13 Flow Regime Map for Vertical Two-Phase Flow Using McQuillan and Wh... Fig. 3-14 Ulbrich and Mewes Flow Regime Map (Solid Line) for Vertically Upwa... Fig. 3-15 Flow Patterns in Vertical Two-Phase Cross Flow from Kanizawa and R... Fig. 3-16 Flow Regime Map Comparison Between Vertically Upward Air-Water Flo... Fig. 3-17 Sketch of Axial-Flow Heated-Cylinder Test Section (Pettigrew and G... Fig. 3-18 Effect of Nucleate Boiling on Cylinder Vibration (Pettigrew and Go... Fig. 3-19 Cross-Flow Tube Bundle Test Section with Heated Tubes (M and T) in... Fig. 3-20 Example 3-3 - Cross-Section of Heat Exchanger Showing Flow Paths 1...Fig. 3-21 Predicted Velocity Vectors (Left), Steam Quality (Second from the ...Fig. 3-22 Vector Fluid Velocity for a Maximum-Radius Tube Shown by Thick-Lin...Fig. 3-23 Gap Cross-Flow Velocity for the Maximum-Radius Tube.Fig. 3-24 Predicted (a) Velocity and (b) Air Concentration Distributions in ...Fig. 3-25 Process Heat Exchanger Predictions of Velocity Distribution for (a...Fig. 3-26 CFD Predictions of Path Lines in a Shell-and-Tube Heat Exchanger w...

4 Chapter 4Fig. 4-1 Effect of Void Fraction and Mass Flux on Hydrodynamic Mass Ratio (P...Fig. 4-2 Effect of P/D and Bundle Geometry on Hydrodynamic Mass Ratio (Petti...Fig. 4-3 Effect of Slip Ratio and Fluid Mixture on Hydrodynamic Mass Ratio C...Fig. 4-4 Straight Tube with Simple Support at Each End.Fig. 4-5 Two‐Span Beam with Outer Ends Clamped.Fig. 4-6 Multi‐Span Beam with Outer Ends Clamped.Fig. 4-7 View of Typical Steam Generator U‐Tube with Support Points Located ...Fig. 4-8 Nomenclature Utilized in Representing Lateral and Rotational Displa...Fig. 4-9 View of Half of Steam Generator U‐Tube, Referred to as a Half‐Tube,...Fig. 4-10 Schematic Representation of Boundary and Continuity Conditions to ...Fig. 4-11 Schematic Representation of Boundary and Continuity Conditions to ...Fig. 4-12 Schematic Representation of First and Second Free Vibration In‐Pla...Fig. 4-13 Schematic Representation of First and Second Free Vibration Out‐of...Fig. 4-14 Schematic Representation of Boundary and Continuity Conditions to ...Fig. 4-15 Schematic Representation of Boundary and Continuity Conditions to ...Fig. 4-16 Schematic Representation of Boundary and Continuity Conditions to ...Fig. 4-17 Schematic Representation of Boundary and Continuity Conditions to ...

5 Chapter 5Fig. 5-1 Types of Tube Motion at Support Location.Fig. 5-2 Types of Dynamic Interaction between Tube and Tube Support.Fig. 5-3 Damping of Heat Exchanger Tubes in Air.Fig. 5-4 Effect of Tube Support Thickness on Damping in Gases (Air).Fig. 5-5 Effect of Tube Support Thickness on Normalized Damping Ratio in Gas...Fig. 5-6 Effect of Support Thickness on a) Sliding Interaction, and b) Impac...Fig. 5-7 Effect of Dimensionless Support Thickness ( L / m) on Normali...Fig. 5-8 Design Recommendation for Damping in Gases.Fig. 5-9 Damping Data for Multi‐Span Heat Exchanger Tubes in Water.Fig. 5-10 Viscous Damping Data for a Cylinder in Confined (Chen et al, 1976)...Fig. 5-11 Viscous Damping of Cylinders in Liquids Versus Stokes Number.Fig. 5-12 Damping Due to Tube Supports in Multi‐Span Heat Exchanger Tubes.Fig. 5-13 Heat Exchanger Tube with N Spans and ( N ‐1) Intermediate Supports....Fig. 5-14 Linearization of Three‐Dimensional Factor K.Fig. 5-15 Damping and Hydrodynamic Mass Functions, Im(h) and Re(h), (Mulcahy...Fig. 5-16 Squeeze‐Film Damping of a Multi‐Span Heat Exchanger Tube in Water....Fig. 5-17 Effect of Support Thickness Parameter L / mon Damping due to...Fig. 5-18 Comparison between Tube Support Damping Parameter and Experimental...Fig. 5-19 Type of Contact Between Tube and Support.Fig. 5-20 Comparison between Tube Support Damping Model (Squeeze‐Film and Fr...

6 Chapter 6Fig. 6-1 Flow Regime Map for Tube Bundles in Vertical Cross Flow: Symbols Sh...Fig. 6-2 Damping of a Cylinder in Confined Air‐Water Axial Flow; Mass Flux: ...Fig. 6-3 Effect of Mass Flux on Two‐Phase Damping Ratio in Annular Flow (Car...Fig. 6-4 Effect of Mass Flux on Tube Damping in Two‐Phase Cross Flow (Pettig...Fig. 6-5 Effect of Mass Flux on Damping in Lift and Drag Directions for a No...Fig. 6-6 Damping of Tube Bundles of P/D = 1.47 in Two‐Phase Cross Flow Showi...Fig. 6-7 Damping of Tube Bundles in Two‐Phase Cross Flow: Comparison of Air‐...Fig. 6-8 Damping of a Rotated‐Triangular Tube Bundle in Freon‐22 Two‐Phase C...Fig. 6-9 Effect of Void Fraction on Two‐Phase Damping in Cross Flow: Propose...Fig. 6-10 Damping of Tube Rows in Air-Water Cross Flows; ▴ Taylor et al (198...Fig. 6-11 Total Damping for Tube Bundles of P/D = 1.22 in Air‐Water Cross Fl...Fig. 6-12 Damping Behavior: Comparison Between All Flexible Tube Bundle and ...Fig. 6-13 Effect of Surface Tension on Two‐Phase Damping for Tube Frequencie...Fig. 6-14 Damping of Rotated Triangular Tube Bundles: Comparison Between Air...Fig. 6-15 Comparison Between Proposed Design Guideline and Available Damping...

7 Chapter 7Fig. 7-1 Typical Vibration Response versus Flow Velocity Relationship for Tu...Fig. 7-2 Vibration Response of a Normal‐Triangular Tube Bundle of P/D = 1.33...Fig. 7-3 Fluidelastic Instability Data and Design Recommendations for Variou...Fig. 7-4 Fluidelastic Instability Diagrams: a) Normal Square, b) Rotated Squ...Fig. 7-5 Principal Tube Bundle Configurations.Fig. 7-6 Well-Defined Fluidelastic ThresholdFig. 7-7 Less Well-Defined Fluidelastic ThresholdFig. 7-8 Vibration Response of One Flexible Tube versus Seven Flexible Tubes...Fig. 7-9 Outline of Fluidelastic Instability Data for All‐Flexible Tube Bund...Fig. 7-10 Fluidelastic Instability of a Single Flexible Tube in Rigid Arrays...Fig. 7-11 Fluidelastic Instability of a Single Flexible Tube in a Normal‐Squ...Fig. 7-12 Comparison of Fluidelastic Instability Results with Only Structura...Fig. 7-13 Fluidelastic Instability Data for Flexible Tube Bundles: Compariso...Fig. 7-14 Effect of Pitch‐to‐Diameter Ratio on Fluidelastic Instability Cons...Fig. 7-15 Fluidelastic Instability Data Presented in Terms of Modified Mass‐...Fig. 7-16 Fluidelastic Instability Data for Different Tube Bundle Configurat...Fig. 7-17 Summary of Fluidelastic Instability Data for All‐Flexible Tube Bun...Fig. 7-18 Fluidelastic Instability Analysis of Real Heat Exchangers: Compari...Fig. 7-19 Multi‐Span Heat Exchanger Tube Schematic with Cross‐Flow Pattern....Fig. 7-20 Wind‐Tunnel, Rotated‐Triangular Test Array.Fig. 7-21 Response Spectra Variation with Flow Velocity for Tube 2 in a Full...Fig. 7-22 Vibration Response for the Flexible Bundle within Wind Tunnel: ♦, ...Fig. 7-23 Response Frequency versus Flow Velocity for the Flexible Bundle wi...Fig. 7-24 Clamped‐Free Cylinder Experiencing 4 th‐Mode Buckling In Confined L...Fig. 7-25 Selected Frequency Spectra for Fluidelastic Instability of Clamped...

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Flow-Induced Vibration Handbook for Nuclear and Process Equipment»

Представляем Вашему вниманию похожие книги на «Flow-Induced Vibration Handbook for Nuclear and Process Equipment» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Flow-Induced Vibration Handbook for Nuclear and Process Equipment»

Обсуждение, отзывы о книге «Flow-Induced Vibration Handbook for Nuclear and Process Equipment» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x