99 99 Liu, Z., Qiu, J., Wei, F., Wang, J., Liu, X., Helander, M. G., et al. Simple and high efficiency phosphorescence organic light‐emitting diodes with codeposited copper(I) emitter. Chem. Mater. 2014; 26(7):2368–73.
100 100 Wu, F., Li, J., Tong, H., Li, Z., Adachi, C., Langlois, A., et al. Phosphorescent Cu(I) complexes based on bis(pyrazol‐1‐yl‐methyl)‐pyridine derivatives for organic light‐emitting diodes. J. Mater. Chem. C. 2015; 3(1):138–46.
101 101 Liao, J.‐L., Chi, Y., Yeh, C.‐C., Kao, H.‐C., Chang, C.‐H., Fox, M. A., et al. Near infrared‐emitting tris‐bidentate Os(II) phosphors: control of excited state characteristics and fabrication of OLEDs. J. Mater. Chem. C. 2015; 3(19):4910–20.
102 102 Ma, H. L., Lv, A. Q., Fu, L. S., Wang, S., An, Z. F., Shi, H. F., et al. Room‐temperature phosphorescence in metal‐free organic materials. Ann. Phys. Berlin. 2019; 531(7):14.
103 103 Gan, N., Shi H. F., An, Z. F., Huang, W. Recent advances in polymer‐based metal‐free room‐temperature phosphorescent materials. Adv. Funct. Mater. 2018; 28(51):24.
104 104 Zhang, G., Chen, B., Huang, W., Su, H., Miao, H., Zhang, X. Unexpected chromophore‐solvent reaction leads to bicomponent aggregation‐induced phosphorescence. Angew. Chem. Int. Ed. 2020;59:10023–6.
105 105 Zhang, T., Ma, X., Wu, H., Zhu, L., Zhao, Y., Tian, H. Molecular engineering for metal‐free amorphous materials with room‐temperature phosphorescence. Angew. Chem. Int. Ed. 2020;59:11206–16.
106 106 Manimaran, B., Thanasekaran, P., Rajendran, T., Lin, R.‐J., Chang, I. J., Lee, G.‐H., et al. Luminescence enhancement induced by aggregation of alkoxy‐bridged rhenium(I) molecular rectangles. Inorg. Chem. 2002; 41(21):5323–5.
107 107 Climent, C., Alam, P., Pasha, S. S., Kaur, G., Choudhury, A. R., Laskar, I. R., et al. Dual emission and multi‐stimuli‐response in iridium(III) complexes with aggregation‐induced enhanced emission: applications for quantitative CO2 detection. J. Mater. Chem. C. 2017; 5(31):7784–98.
108 108 Wen, L.‐L., Hou, X.‐G., Shan, G.‐G., Song, W.‐L., Zhang, S.‐R., Sun, H.‐Z., et al. Rational molecular design of aggregation‐induced emission cationic Ir(III) phosphors achieving supersensitive and selective detection of nitroaromatic explosives. J. Mater. Chem. C. 2017; 5(41):10847–54.
109 109 Li, P., Zeng, Q.‐Y., Sun, H.‐Z., Akhtar, M., Shan, G.‐G., Hou, X.‐G., et al. Aggregation‐induced emission (AIE) active iridium complexes toward highly efficient single‐layer non‐doped electroluminescent devices. J. Mater. Chem. C. 2016; 4(44):10464–70.
110 110 Zhu, Y.‐C., Zhou, L., Li, H.‐Y., Xu, Q.‐L., Teng, M.‐Y., Zheng, Y.‐X., et al. Highly efficient green and blue‐green phosphorescent OLEDs based on iridium complexes with the tetraphenylimidodiphosphinate ligand. Adv. Mater. 2011; 23(35):4041–6.
111 111 Liu, J., Shi, X., Wu, X., Wang, J., Min, Z., Wang, Y., et al. Achieving above 30% external quantum efficiency for inverted phosphorescence organic light‐emitting diodes based on ultrathin emitting layer. Org. Electron. 2014; 15(10):2492–8.
112 112 Sun, Y., Yang, X., Liu, B., Guo, H., Zhou, G., Ma, W., et al. Aggregation‐induced emission triggered by the radiative‐transition‐switch of a cyclometallated Pt(II) complex. J. Mater. Chem. C. 2019; 7(40):12552–9.
113 113 Baleizão, C., Berberan‐Santos, M. N. Thermally activated delayed fluorescence in fullerenes. Ann. N. Y. Acad. Sci. 2008; 1130(1):224–34.
114 114 Parker, C. A., Hatchard, C. G. Triplet–singlet emission in fluid solutions. Phosphorescence of eosin. Trans. Faraday Soc. 1961; 57:1894–904.
115 115 Yang, Z., Mao, Z., Xie, Z., Zhang, Y., Liu, S., Zhao, J., et al. Recent advances in organic thermally activated delayed fluorescence materials. Chem. Soc. Rev. 2017; 46(3):915–1016.
116 116 Uoyama, H., Goushi, K., Shizu, K., Nomura, H., Adachi, C. Highly efficient organic light‐emitting diodes from delayed fluorescence. Nature. 2012; 492(7428):234–8.
117 117 Chihaya, A. Third‐generation organic electroluminescence materials. Jpn. J. Appl. Phys. 2014; 53(6):060101.
118 118 Furue, R., Nishimoto, T., Park, I. S., Lee, J., Yasuda, T. Aggregation‐induced delayed fluorescence based on donor/acceptor‐tethered Janus Carborane Triads: unique photophysical properties of nondoped OLEDs. Angew. Chem. Int. Ed. 2016; 55(25):7171–5.
119 119 Guo, J. J., Li, X. L., Nie, H., Luo, W. W., Gan, S. F., Hu, S. M., et al. Achieving high‐performance nondoped OLEDs with extremely small efficiency roll‐off by combining aggregation‐induced emission and thermally activated delayed fluorescence. Adv. Funct. Mater. 2017; 27(13):9.
120 120 Guo, J., Li, X.‐L., Nie, H., Luo, W., Hu, R., Qin, A., et al. Robust luminescent materials with prominent aggregation‐induced emission and thermally activated delayed fluorescence for high‐performance organic light‐emitting diodes. Chem. Mater. 2017; 29(8):3623–31.
121 121 Guo, J., Li, X.‐L., Nie, H., Luo, W., Gan, S., Hu, S., et al. Achieving high‐performance nondoped OLEDs with extremely small efficiency roll‐off by combining aggregation‐induced emission and thermally activated delayed fluorescence. Adv. Funct. Mater. 2017; 27(13):1606458–n/a.
122 122 Li, M., Liu, Y., Duan, R., Wei, X., Yi, Y., Wang, Y., et al. Aromatic‐imide‐based thermally activated delayed fluorescence materials for highly efficient organic light‐emitting diodes. Angew. Chem. Int. Ed. 2017; 56(30):8818–22.
123 123 Keller, R. A. Excited triplet–singlet intersystem crossing. Chem. Phys. Lett. 1969; 3(1):27–9.
124 124 Islam, A., Zhang, D., Peng, R., Yang, R., Hong, L., Song, W., et al. Non‐doped sky‐blue OLEDs based on simple structured AIE emitters with high efficiencies at low driven voltages. Chem. Asian J. 2017; 12(17):2189–96.
125 125 Chen, L., Jiang, Y., Nie, H., Hu, R., Kwok, H. S., Huang, F., et al. Rational design of aggregation‐induced emission luminogen with weak electron donor–acceptor interaction to achieve highly efficient undoped bilayer OLEDs. ACS Appl. Mater. Interfaces. 2014; 6(19):17215–25.
126 126 Han, X., Bai, Q., Yao, L., Liu, H., Gao, Y., Li, J., et al. Highly efficient solid‐state near‐infrared emitting material based on triphenylamine and diphenylfumaronitrile with an EQE of 2.58% in nondoped organic light‐emitting diode. Adv. Funct. Mater. 2015; 25(48):7521–9.
127 127 Fan, J., Cai, L., Lin, L., Wang, C.‐K. Excited state dynamics for hybridized local and charge transfer state fluorescent emitters with aggregation‐induced emission in the solid phase: a QM/MM study. Phys. Chem. Chem. Phys. 2017; 19(44):29872–9.
128 128 Yuan, W. Z., Bin, X., Chen, G., He, Z., Liu, J., Ma, H., et al. Achieving hybridized local and charge‐transfer excited state and excellent OLED performance through facile doping. Adv. Opt. Mater. 2017; 5(21):1700466–n/a.
129 129 Li, C., Hanif, M., Li, X., Zhang, S., Xie, Z., Liu, L., et al. Effect of cyano‐substitution in distyrylbenzene derivatives on their fluorescence and electroluminescence properties. J. Mater. Chem. C. 2016; 4(31):7478–84.
130 130 Kondakov, D. Y., Pawlik, T. D., Hatwar, T. K., Spindler, J. P. Triplet annihilation exceeding spin statistical limit in highly efficient fluorescent organic light‐emitting diodes. J. Appl. Phys. 2009; 106(12):124510.
131 131 Zhou, J., Chen, P., Wang, X., Wang, Y., Wang, Y. Li, F., et al. Charge‐transfer‐featured materials‐promising hosts for fabrication of efficient OLEDs through triplet harvesting via triplet fusion. Chem. Commun. 2014; 50(57):7586–9.
132 132 Singh, S., Jones, W. J., Siebrand, W., Stoicheff, B. P., Schneider, W. G. Laser generation of excitons and fluorescence in anthracene crystals. J. Chem. Phys. 1965; 42(1):330–42.
Читать дальше