63 63 Qin, W., Liu, J., Chen, S., Lam, J. W. Y., Arseneault, M., Yang, Z., et al. Crafting NPB with tetraphenylethene: a win–win strategy to create stable and efficient solid‐state emitters with aggregation‐induced emission feature, high hole‐transporting property and efficient electroluminescence. J. Mater. Chem. C. 2014; 2(19):3756–61.
64 64 Peng, Z., Huang, K., Tao, Y., Li, X., Zhang, L., Lu, P., et al. Turning on the solid emission from non‐emissive 2‐aryl‐3‐cyanobenzofurans by tethering tetraphenylethene for green electroluminescence. Mater. Chem. Front. 2017; 1(9):1858–65.
65 65 Xiong, Y., Zeng, J. J., Chen, B., Lam, J. W. Y., Zhao, Z. J., Chen, S. M., et al. New carbazole‐substituted siloles for the fabrication of efficient non‐doped OLEDs. Chin. Chem. Lett. 2019; 30(3):592–6.
66 66 Gupta, V. K., Singh, R. A. Aggregation‐induced enhanced green light emission from a simple donor–π–acceptor (D–π–A) material: a structure–property relationship study. Faraday Discuss. 2017; 196(0):131–42.
67 67 Chen, L., Zhang, C., Lin, G., Nie, H., Luo, W., Zhuang, Z., et al. Solution‐processable, star‐shaped bipolar tetraphenylethene derivatives for the fabrication of efficient nondoped OLEDs. J. Mater. Chem. C. 2016; 4(14):2775–83.
68 68 Shi, H., Xin, D., Bai, S.‐D., Fang, L., Duan, X.‐E., Roose, J., et al. The synthesis, crystal structures, aggregation‐induced emission and electroluminescence properties of two novel green‐yellow emitters based on carbazole‐substituted diphenylethene and dimesitylboron. Org. Electron. 2016; 33:78–87.
69 69 Shi, H., Xin, D., Gu, X., Zhang, P., Peng, H., Chen, S., et al. The synthesis of novel AIE emitters with the triphenylethene‐carbazole skeleton and para‐/meta‐substituted arylboron groups and their application in efficient non‐doped OLEDs. J. Mater. Chem. C. 2016; 4(6):1228–37.
70 70 Zhao, Q., Sun, J. Z. Red and near infrared emission materials with AIE characteristics. J. Mater. Chem. C. 2016; 4(45):10588–609.
71 71 Zhang, L. P., Che, W. L., Yang, Z. Y., Liu, X. M., Liu, S., Xie, Z. G., et al. Bright red aggregation‐induced emission nanoparticles for multifunctional applications in cancer therapy. Chem. Sci. 2020; 11(9):2369–74.
72 72 Xu, W., Lee, M. M. S., Nie, J.‐J., Zhang, Z., Kwok, R. T. K., Lam, J. W. Y., et al. Three‐pronged attack by homologous far‐red/NIR AIEgens to achieve 1+1+1>3 synergistic enhanced photodynamic therapy. Angew. Chem. Int. Ed. 2020;59:9610–16.
73 73 Wan, Q., Tong, J., Zhang, B., Li, Y., Wang, Z., Tang B. Z. Exploration of high efficiency AIE‐active deep/near‐infrared red emitters in OLEDs with high‐radiance. Adv. Opt. Mater. 2020; 8(4):1901520.
74 74 Zhao, Z., Deng, C., Chen, S., Lam, J. W. Y., Qin, W., Lu, P., et al. Full emission color tuning in luminogens constructed from tetraphenylethene, benzo‐2,1,3‐thiadiazole and thiophene building blocks. Chem. Commun. 2011; 47(31):8847–9.
75 75 Zhao, Z., Geng, J., Chang, Z., Chen, S., Deng, C., Jiang, T., et al. A tetraphenylethene‐based red luminophor for an efficient non‐doped electroluminescence device and cellular imaging. J. Mater. Chem. 2012; 22(22):11018–21.
76 76 Li, H., Chi, Z., Zhang, X., Xu, B., Liu, S., Zhang, Y., et al. New thermally stable aggregation‐induced emission enhancement compounds for non‐doped red organic light‐emitting diodes. Chem. Commun. 2011; 47(40):11273–5.
77 77 Qin, W., Lam, J. W. Y., Yang, Z., Chen, S., Liang, G., Zhao, W., et al. Red emissive AIE luminogens with high hole‐transporting properties for efficient non‐doped OLEDs. Chem. Commun. 2015; 51(34):7321–4.
78 78 Du, X., Qi, J., Zhang, Z., Ma, D., Wang, Z. Y. Efficient non‐doped near infrared organic light‐emitting devices based on fluorophores with aggregation‐induced emission enhancement. Chem. Mater. 2012; 24(11):2178–85.
79 79 Chen, S., Kwok, H. S., Zhao, Z., Tang, B. Z. P‐165: efficient RGBW OLEDs based on 4,4′‐Bis (1,2,2‐triphenylvinyl)biphenyl. SID Symp. Dig. Tech. Pap. 2010; 41(1):1867–70.
80 80 Zhao, Z., Lam, J. W. Y., Tang, B. Z. Tetraphenylethene: a versatile AIE building block for the construction of efficient luminescent materials for organic light‐emitting diodes. J. Mater. Chem. 2012; 22(45):23726–40.
81 81 Chen, S., Zhao, Z., Tang, B. Z., Kwok, H. S. Non‐doped white organic light‐emitting diodes based on aggregation‐induced emission. J. Phys. D Appl. Phys. 2010; 43(9):095101.
82 82 Chen, S., Zhao, Z., Wang, Z., Lu, P., Gao, Z., Ma, Y., et al. Bi‐layer non‐doped small‐molecular white organic light‐emitting diodes with high colour stability. J. Phys. D Appl. Phys. 2011; 44(14):145101.
83 83 Liu, S., Li, F., Diao, Q., Ma, Y. Aggregation‐induced enhanced emission materials for efficient white organic light‐emitting devices. Org. Electron. 2010; 11(4):613–7.
84 84 Lee, Y.‐T., Chang, Y.‐T., Chen, C.‐T., Chen, C.‐T. The first aggregation‐induced emission fluorophore as a solution processed host material in hybrid white organic light‐emitting diodes. J. Mater. Chem. C. 2016; 4(29):7020–5.
85 85 Liu, B., Nie, H., Lin, G., Hu, S., Gao, D., Zou, J., et al. High‐performance doping‐free hybrid white OLEDs based on blue aggregation‐induced emission luminogens. ACS Appl. Mater. Interf. 2017; 9(39):34162–71.
86 86 Chen, B., Liu, B., Zeng, J., Nie, H., Xiong, Y., Zou, J., et al. Efficient bipolar blue AIEgens for high‐performance nondoped blue OLEDs and hybrid white OLEDs. Adv. Funct. Mater. 2018; 28(40):1803369.
87 87 Xu, Z., Gong, Y., Dai, Y., Sun, Q., Qiao, X., Yang, D., et al. High efficiency and low roll‐off hybrid WOLEDs by using a deep blue aggregation‐induced emission material simultaneously as blue emitter and phosphor host. Adv. Opt. Mater. 2019; 7(9):1801539.
88 88 Xu, Z., Gu, J., Qiao, X., Qin, A., Tang, B. Z., Ma, D. Highly efficient deep blue aggregation‐induced emission organic molecule: a promising multifunctional electroluminescence material for blue/green/orange/red/white OLEDs with superior efficiency and low roll‐off. ACS Photonics. 2019; 6(3):767–78.
89 89 Duggal, A. R., Shiang, J. J., Heller, C. M., Foust, D. F. Organic light‐emitting devices for illumination quality white light. Appl. Phys. Lett. 2002; 80(19):3470–2.
90 90 Krummacher, B. C., Choong, V.‐E., Mathai, M. K., Choulis, S. A., So, F., Jermann, F., et al. Highly efficient white organic light‐emitting diode. Appl. Phys. Lett. 2006; 88(11):113506.
91 91 Chen, S., Kwok, H.‐S. Top‐emitting white organic light‐emitting diodes with a color conversion cap layer. Org. Electron. 2011; 12(4):677–81.
92 92 Guo, J. J., Zhao, Z. J., Tang, B. Z. Purely organic materials with aggregation‐induced delayed fluorescence for efficient nondoped OLEDs. Adv. Optical Mater. 2018; 6(15):11.
93 93 Ma, Y., Zhang, H., Shen, J., Che, C. Electroluminescence from triplet metal–ligand charge‐transfer excited state of transition metal complexes. Synth. Met. 1998; 94(3):245–8.
94 94 Baldo, M. A., O'Brien, D. F., You, Y., Shoustikov, A., Sibley, S., Thompson, M. E., et al. Highly efficient phosphorescent emission from organic electroluminescent devices. Nature. 1998; 395:151.
95 95 Huckaba, A. J., Nazeeruddin, M. K. Strategies for tuning emission energy in phosphorescent Ir(III) complexes. Comment. Inorg. Chem. 2017; 37(3):117–45.
96 96 Godin, R., Wang, Y., Zwijnenburg, M. A., Tang, J., Durrant, J. R. Time‐resolved spectroscopic investigation of charge trapping in carbon nitrides photocatalysts for hydrogen generation. J. Am. Chem. Soc. 2017; 139(14):5216–24.
97 97 Tang, M. C., Chan, A. K. W., Chan, M. Y., Yam, V. W. W. Platinum and gold complexes for OLEDs. Top. Curr. Chem. 2016; 374(4):43.
98 98 Strassner, T. Phosphorescent platinum(II) complexes with CC cyclometalated NHC ligands. Acc. Chem. Res. 2016; 49(12):2680–9.
Читать дальше