Handbook of Aggregation-Induced Emission, Volume 3

Здесь есть возможность читать онлайн «Handbook of Aggregation-Induced Emission, Volume 3» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: unrecognised, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Handbook of Aggregation-Induced Emission, Volume 3: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Handbook of Aggregation-Induced Emission, Volume 3»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

The third volume of the ultimate reference on the science and applications of aggregation-induced emission  The Handbook of Aggregation-Induced Emission In 
the editors address the applications of AIEgens in several fields, including bio-imaging, fluorescent molecular switches, electrochromic materials, regenerative medicine, detection of organic volatile contaminants, hydrogels, and organogels. Topics covered include: 
AIE-active emitters and their applications in OLEDs, and circularly polarized luminescence of aggregation-induced emission materials AIE polymer films for optical sensing and energy harvesting, aggregation-induced electrochemiluminescence, and mechanoluminescence materials with aggregation-induced emission Dynamic super-resolution fluorescence imaging based on photoswitchable fluorescent spiropyran Visualization of polymer microstructures Self-assembly of micelle and vesicles New strategies for biosensing and cell imaging Perfect for academic researchers working on aggregation-induced emission, this set of volumes is also ideal for professionals and students in the fields of photophysics, photochemistry, materials science, optoelectronic materials, synthetic organic chemistry, macromolecular chemistry, polymer science, and biological sciences.

Handbook of Aggregation-Induced Emission, Volume 3 — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Handbook of Aggregation-Induced Emission, Volume 3», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

63 63 Qin, W., Liu, J., Chen, S., Lam, J. W. Y., Arseneault, M., Yang, Z., et al. Crafting NPB with tetraphenylethene: a win–win strategy to create stable and efficient solid‐state emitters with aggregation‐induced emission feature, high hole‐transporting property and efficient electroluminescence. J. Mater. Chem. C. 2014; 2(19):3756–61.

64 64 Peng, Z., Huang, K., Tao, Y., Li, X., Zhang, L., Lu, P., et al. Turning on the solid emission from non‐emissive 2‐aryl‐3‐cyanobenzofurans by tethering tetraphenylethene for green electroluminescence. Mater. Chem. Front. 2017; 1(9):1858–65.

65 65 Xiong, Y., Zeng, J. J., Chen, B., Lam, J. W. Y., Zhao, Z. J., Chen, S. M., et al. New carbazole‐substituted siloles for the fabrication of efficient non‐doped OLEDs. Chin. Chem. Lett. 2019; 30(3):592–6.

66 66 Gupta, V. K., Singh, R. A. Aggregation‐induced enhanced green light emission from a simple donor–π–acceptor (D–π–A) material: a structure–property relationship study. Faraday Discuss. 2017; 196(0):131–42.

67 67 Chen, L., Zhang, C., Lin, G., Nie, H., Luo, W., Zhuang, Z., et al. Solution‐processable, star‐shaped bipolar tetraphenylethene derivatives for the fabrication of efficient nondoped OLEDs. J. Mater. Chem. C. 2016; 4(14):2775–83.

68 68 Shi, H., Xin, D., Bai, S.‐D., Fang, L., Duan, X.‐E., Roose, J., et al. The synthesis, crystal structures, aggregation‐induced emission and electroluminescence properties of two novel green‐yellow emitters based on carbazole‐substituted diphenylethene and dimesitylboron. Org. Electron. 2016; 33:78–87.

69 69 Shi, H., Xin, D., Gu, X., Zhang, P., Peng, H., Chen, S., et al. The synthesis of novel AIE emitters with the triphenylethene‐carbazole skeleton and para‐/meta‐substituted arylboron groups and their application in efficient non‐doped OLEDs. J. Mater. Chem. C. 2016; 4(6):1228–37.

70 70 Zhao, Q., Sun, J. Z. Red and near infrared emission materials with AIE characteristics. J. Mater. Chem. C. 2016; 4(45):10588–609.

71 71 Zhang, L. P., Che, W. L., Yang, Z. Y., Liu, X. M., Liu, S., Xie, Z. G., et al. Bright red aggregation‐induced emission nanoparticles for multifunctional applications in cancer therapy. Chem. Sci. 2020; 11(9):2369–74.

72 72 Xu, W., Lee, M. M. S., Nie, J.‐J., Zhang, Z., Kwok, R. T. K., Lam, J. W. Y., et al. Three‐pronged attack by homologous far‐red/NIR AIEgens to achieve 1+1+1>3 synergistic enhanced photodynamic therapy. Angew. Chem. Int. Ed. 2020;59:9610–16.

73 73 Wan, Q., Tong, J., Zhang, B., Li, Y., Wang, Z., Tang B. Z. Exploration of high efficiency AIE‐active deep/near‐infrared red emitters in OLEDs with high‐radiance. Adv. Opt. Mater. 2020; 8(4):1901520.

74 74 Zhao, Z., Deng, C., Chen, S., Lam, J. W. Y., Qin, W., Lu, P., et al. Full emission color tuning in luminogens constructed from tetraphenylethene, benzo‐2,1,3‐thiadiazole and thiophene building blocks. Chem. Commun. 2011; 47(31):8847–9.

75 75 Zhao, Z., Geng, J., Chang, Z., Chen, S., Deng, C., Jiang, T., et al. A tetraphenylethene‐based red luminophor for an efficient non‐doped electroluminescence device and cellular imaging. J. Mater. Chem. 2012; 22(22):11018–21.

76 76 Li, H., Chi, Z., Zhang, X., Xu, B., Liu, S., Zhang, Y., et al. New thermally stable aggregation‐induced emission enhancement compounds for non‐doped red organic light‐emitting diodes. Chem. Commun. 2011; 47(40):11273–5.

77 77 Qin, W., Lam, J. W. Y., Yang, Z., Chen, S., Liang, G., Zhao, W., et al. Red emissive AIE luminogens with high hole‐transporting properties for efficient non‐doped OLEDs. Chem. Commun. 2015; 51(34):7321–4.

78 78 Du, X., Qi, J., Zhang, Z., Ma, D., Wang, Z. Y. Efficient non‐doped near infrared organic light‐emitting devices based on fluorophores with aggregation‐induced emission enhancement. Chem. Mater. 2012; 24(11):2178–85.

79 79 Chen, S., Kwok, H. S., Zhao, Z., Tang, B. Z. P‐165: efficient RGBW OLEDs based on 4,4′‐Bis (1,2,2‐triphenylvinyl)biphenyl. SID Symp. Dig. Tech. Pap. 2010; 41(1):1867–70.

80 80 Zhao, Z., Lam, J. W. Y., Tang, B. Z. Tetraphenylethene: a versatile AIE building block for the construction of efficient luminescent materials for organic light‐emitting diodes. J. Mater. Chem. 2012; 22(45):23726–40.

81 81 Chen, S., Zhao, Z., Tang, B. Z., Kwok, H. S. Non‐doped white organic light‐emitting diodes based on aggregation‐induced emission. J. Phys. D Appl. Phys. 2010; 43(9):095101.

82 82 Chen, S., Zhao, Z., Wang, Z., Lu, P., Gao, Z., Ma, Y., et al. Bi‐layer non‐doped small‐molecular white organic light‐emitting diodes with high colour stability. J. Phys. D Appl. Phys. 2011; 44(14):145101.

83 83 Liu, S., Li, F., Diao, Q., Ma, Y. Aggregation‐induced enhanced emission materials for efficient white organic light‐emitting devices. Org. Electron. 2010; 11(4):613–7.

84 84 Lee, Y.‐T., Chang, Y.‐T., Chen, C.‐T., Chen, C.‐T. The first aggregation‐induced emission fluorophore as a solution processed host material in hybrid white organic light‐emitting diodes. J. Mater. Chem. C. 2016; 4(29):7020–5.

85 85 Liu, B., Nie, H., Lin, G., Hu, S., Gao, D., Zou, J., et al. High‐performance doping‐free hybrid white OLEDs based on blue aggregation‐induced emission luminogens. ACS Appl. Mater. Interf. 2017; 9(39):34162–71.

86 86 Chen, B., Liu, B., Zeng, J., Nie, H., Xiong, Y., Zou, J., et al. Efficient bipolar blue AIEgens for high‐performance nondoped blue OLEDs and hybrid white OLEDs. Adv. Funct. Mater. 2018; 28(40):1803369.

87 87 Xu, Z., Gong, Y., Dai, Y., Sun, Q., Qiao, X., Yang, D., et al. High efficiency and low roll‐off hybrid WOLEDs by using a deep blue aggregation‐induced emission material simultaneously as blue emitter and phosphor host. Adv. Opt. Mater. 2019; 7(9):1801539.

88 88 Xu, Z., Gu, J., Qiao, X., Qin, A., Tang, B. Z., Ma, D. Highly efficient deep blue aggregation‐induced emission organic molecule: a promising multifunctional electroluminescence material for blue/green/orange/red/white OLEDs with superior efficiency and low roll‐off. ACS Photonics. 2019; 6(3):767–78.

89 89 Duggal, A. R., Shiang, J. J., Heller, C. M., Foust, D. F. Organic light‐emitting devices for illumination quality white light. Appl. Phys. Lett. 2002; 80(19):3470–2.

90 90 Krummacher, B. C., Choong, V.‐E., Mathai, M. K., Choulis, S. A., So, F., Jermann, F., et al. Highly efficient white organic light‐emitting diode. Appl. Phys. Lett. 2006; 88(11):113506.

91 91 Chen, S., Kwok, H.‐S. Top‐emitting white organic light‐emitting diodes with a color conversion cap layer. Org. Electron. 2011; 12(4):677–81.

92 92 Guo, J. J., Zhao, Z. J., Tang, B. Z. Purely organic materials with aggregation‐induced delayed fluorescence for efficient nondoped OLEDs. Adv. Optical Mater. 2018; 6(15):11.

93 93 Ma, Y., Zhang, H., Shen, J., Che, C. Electroluminescence from triplet metal–ligand charge‐transfer excited state of transition metal complexes. Synth. Met. 1998; 94(3):245–8.

94 94 Baldo, M. A., O'Brien, D. F., You, Y., Shoustikov, A., Sibley, S., Thompson, M. E., et al. Highly efficient phosphorescent emission from organic electroluminescent devices. Nature. 1998; 395:151.

95 95 Huckaba, A. J., Nazeeruddin, M. K. Strategies for tuning emission energy in phosphorescent Ir(III) complexes. Comment. Inorg. Chem. 2017; 37(3):117–45.

96 96 Godin, R., Wang, Y., Zwijnenburg, M. A., Tang, J., Durrant, J. R. Time‐resolved spectroscopic investigation of charge trapping in carbon nitrides photocatalysts for hydrogen generation. J. Am. Chem. Soc. 2017; 139(14):5216–24.

97 97 Tang, M. C., Chan, A. K. W., Chan, M. Y., Yam, V. W. W. Platinum and gold complexes for OLEDs. Top. Curr. Chem. 2016; 374(4):43.

98 98 Strassner, T. Phosphorescent platinum(II) complexes with CC cyclometalated NHC ligands. Acc. Chem. Res. 2016; 49(12):2680–9.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Handbook of Aggregation-Induced Emission, Volume 3»

Представляем Вашему вниманию похожие книги на «Handbook of Aggregation-Induced Emission, Volume 3» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Handbook of Aggregation-Induced Emission, Volume 3»

Обсуждение, отзывы о книге «Handbook of Aggregation-Induced Emission, Volume 3» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x