Handbook of Aggregation-Induced Emission, Volume 3

Здесь есть возможность читать онлайн «Handbook of Aggregation-Induced Emission, Volume 3» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: unrecognised, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Handbook of Aggregation-Induced Emission, Volume 3: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Handbook of Aggregation-Induced Emission, Volume 3»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

The third volume of the ultimate reference on the science and applications of aggregation-induced emission  The Handbook of Aggregation-Induced Emission In 
the editors address the applications of AIEgens in several fields, including bio-imaging, fluorescent molecular switches, electrochromic materials, regenerative medicine, detection of organic volatile contaminants, hydrogels, and organogels. Topics covered include: 
AIE-active emitters and their applications in OLEDs, and circularly polarized luminescence of aggregation-induced emission materials AIE polymer films for optical sensing and energy harvesting, aggregation-induced electrochemiluminescence, and mechanoluminescence materials with aggregation-induced emission Dynamic super-resolution fluorescence imaging based on photoswitchable fluorescent spiropyran Visualization of polymer microstructures Self-assembly of micelle and vesicles New strategies for biosensing and cell imaging Perfect for academic researchers working on aggregation-induced emission, this set of volumes is also ideal for professionals and students in the fields of photophysics, photochemistry, materials science, optoelectronic materials, synthetic organic chemistry, macromolecular chemistry, polymer science, and biological sciences.

Handbook of Aggregation-Induced Emission, Volume 3 — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Handbook of Aggregation-Induced Emission, Volume 3», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Increasing the efficiency of OLED devices is a complex and integrated challenge in the long term. As for the EMLs, they might have multiple photophysical mechanisms coexisting in the emitters both at the molecular levels and in the aggregated state, therefore the strategic design for the emitters was highly required. Apart from the influence of emitters, many other factors also play significant roles in determining the efficiency of OLED devices such as processing methods, doping, and lighting‐extraction. When it comes to the application of emitters from the laboratory to commercial, these factors, including cost, stability, and lifetime of the device cannot be ignored. From these points, AIE emitters have already been applied in nondoped OLEDs with evident advantages of high efficiency, low cost, and high stability. In spite of these achievement, there is still enough room for developing AIE emitters in OLEDs, such as improving the efficiency of OLEDs or designing novel AIE emitters with other high EUE mechanism of triplet–triplet annihilation (TTA) [130, 131], triplet exciton‐polaron annihilation (TPA) [33], or singlet fission [132]. Finally, we hope that OLED devices will profit more from AIE emitters both academically and commercially in the future.

Acknowledgments

This work is financially supported by the National Key R&D Program of China (2016YFB0401000, 2017YFE0106000), National Natural Science Foundation of China (21805296, 21876158, 51773212, 21574144 and 21674123), Zhejiang Provincial Natural Science Foundation of China (LR16b040002), Natural Science Foundation of Ningbo City (2018A610134), Ningbo Municipal Science and Technology Innovative Research Team (2015B11002 and 2016b10005), CAS Key Project of Frontier Science Research (QYZDB‐SSW‐SYS030), CAS Key Project of International Cooperation (174433KYSB20160065), and Zhejiang Provincial Natural Science Foundation of China (Grant No. LY20B040002).

References

1 1 Tang, C. W., VanSlyke, S. A. Organic electroluminescent diodes. Appl. Phys. Lett. 1987; 51(12):913–5.

2 2 Jeong, H., Shin, H., Lee, J., Kim, B., Park, Y. I., Yook, K. S., et al. Recent progress in the use of fluorescent and phosphorescent organic compounds for organic light‐emitting diode lighting. J. Photon. Energy. 2015; 5:23.

3 3 Wei, Q., Fei, N., Islam, A., Lei, T., Hong, L., Peng, R., et al. Small‐molecule emitters with high quantum efficiency: mechanisms, structures, and applications in OLED devices. Adv. Opt. Mater. 2018; 6(20):1800512.

4 4 Zou, S. J., Shen, Y., Xie, F. M., Chen, J. D., Li, Y. Q., Tang, J. X. Recent advances in organic light‐emitting diodes: toward smart lighting and displays. Mater. Chem. Front. 2020; 4(3):788–820.

5 5 Reineke, S., Thomschke, M., Lüssem, B., Leo, K. White organic light‐emitting diodes: status and perspective. Rev. Mod. Phys. 2013; 85(3):1245–93.

6 6 Ostroverkhova, O. Organic optoelectronic materials: mechanisms and applications. Chem. Rev. 2016; 116(22):13279–412.

7 7 Wei, Q., Pötzsch, R., Liu, X., Komber, H., Kiriy, A., Voit, B., et al. Hyperbranched polymers with high transparency and inherent high refractive index for application in organic light‐emitting diodes. Adv. Funct. Mater. 2016; 26(15):2545–53.

8 8 Fei, N., Wei, Q., Cao, L., Bai, Y., Ji, H., Peng, R., et al. A symmetric nonpolar blue AIEgen as nondoped fluorescent OLED emitter with low efficiency roll‐off. Org. Electron. 2020; 78:105574.

9 9 Li, Y. G., Wei, Q., Cao, L., Fries, F., Cucchi, M., Wu, Z. B., et al. Organic light‐emitting diodes based on conjugation‐induced thermally activated delayed fluorescence polymers: interplay between intra‐ and intermolecular charge transfer states. Front. Chem. 2019; 7:12.

10 10 Yang, R., Guan, Q., Liu, Z., Song, W., Hong, L., Lei, T., et al. A methodological study on tuning the thermally activated delayed fluorescent performance by molecular constitution in acridine–benzophenone derivatives. Chem. Asian J. 2018; 13(9):1187–91.

11 11 Im, Y., Byun, S. Y., Kim, J. H., Lee, D. R., Oh, C. S., Yook, K. S., et al. Recent progress in high‐efficiency blue‐light‐emitting materials for organic light‐emitting diodes. Adv. Funct. Mater. 2017; 27(13):1603007–n/a.

12 12 Song, J., Lee, H., Jeong, E. G., Choi, K. C., Yoo, S. Organic light‐emitting diodes: pushing toward the limits and beyond. Adv. Mater. (Deerfield Beach, Fla). 2020:e1907539.

13 13 Wei, Q., Ge, Z., Voit, B. Thermally activated delayed fluorescent polymers: structures, properties, and applications in OLED devices. Macromol. Rapid Commun. 2019; 40(1):1800570.

14 14 Mei, J., Hong, Y., Lam, J. W. Y., Qin, A., Tang, Y., Tang, B. Z. Aggregation‐induced emission: the whole is more brilliant than the parts. Adv. Mater. 2014; 26(31):5429–79.

15 15 Sliney, D. H. Radiometric quantities and units used in photobiology and photochemistry: recommendations of the Commission Internationale de l’Eclairage (International Commission on Illumination). Photochem. Photobiol. 2007; 83(2):425–32.

16 16 Robertson, A. R. The CIE 1976 color‐difference formulae. Color Res. Appl. 1977; 2(1):7–11.

17 17 Karzazi, Y. Organic light emitting diodes: devices and applications. J. Mater. Environ. Sci. 2014; 5(1):1–12.

18 18 Forrest, S. R., Bradley, D. D. C., Thompson, M. E. Measuring the efficiency of organic light‐emitting devices. Adv. Mater. 2003; 15(13):1043–8.

19 19 Roose, J., Tang, B. Z., Wong, K. S. Circularly‐polarized luminescence (CPL) from chiral AIE molecules and macrostructures. Small. 2016; 12(47):6495–512.

20 20 Baldo, M. A., Adachi, C., Forrest, S. R. Transient analysis of organic electrophosphorescence. II. Transient analysis of triplet–triplet annihilation. Physical Review B. 2000; 62(16):10967–77.

21 21 Endo, A., Ogasawara, M., Takahashi, A., Yokoyama, D., Kato, Y., Adachi, C. Thermally activated delayed fluorescence from Sn4+–porphyrin complexes and their application to organic light emitting diodes—a novel mechanism for electroluminescence. Adv. Mater. 2009; 21(47):4802–6.

22 22 Endo, A., Sato, K., Yoshimura, K., Kai, T., Kawada, A., Miyazaki, H., et al. Efficient up‐conversion of triplet excitons into a singlet state and its application for organic light emitting diodes. Appl. Phys. Lett. 2011; 98(8):083302.

23 23 Deaton, J. C., Switalski, S. C., Kondakov, D. Y., Young, R. H., Pawlik, T. D., Giesen, D. J., et al. E‐type delayed fluorescence of a phosphine‐supported Cu2(μ‐NAr2)2 diamond core: harvesting singlet and triplet excitons in OLEDs. J. Am. Chem. Soc. 2010; 132(27):9499–508.

24 24 Albrecht, K., Matsuoka, K., Fujita, K., Yamamoto, K. Carbazole dendrimers as solution‐processable thermally activated delayed‐fluorescence materials. Angew. Chem. Int. Ed. 2015; 54(19):5677–82.

25 25 Kaji, H., Suzuki, H., Fukushima, T., Shizu, K., Suzuki, K., Kubo, S., et al. Purely organic electroluminescent material realizing 100% conversion from electricity to light. Nat. Commun. 2015; 6:8476.

26 26 Xiao, L., Su, S.‐J., Agata, Y., Lan, H., Kido, J. Nearly 100% internal quantum efficiency in an organic blue‐light electrophosphorescent device using a weak electron transporting material with a wide energy gap. Adv. Mater. 2009; 21(12):1271–4.

27 27 Rizzo, F., Cucinotta, F. Recent developments in AIEgens for non‐doped and TADF OLEDs. Israel J. Chem. 2018; 58(8):874–88.

28 28 Li, W., Liu, D., Shen, F., Ma, D., Wang, Z., Feng, T., et al. A twisting donor–acceptor molecule with an intercrossed excited state for highly efficient, deep‐blue electroluminescence. Adv. Funct. Mater. 2012; 22(13):2797–803.

29 29 Zhang, S., Li, W., Yao, L., Pan, Y., Shen, F., Xiao, R., et al. Enhanced proportion of radiative excitons in non‐doped electro‐fluorescence generated from an imidazole derivative with an orthogonal donor–acceptor structure. Chem. Commun. 2013; 49(96):11302–4.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Handbook of Aggregation-Induced Emission, Volume 3»

Представляем Вашему вниманию похожие книги на «Handbook of Aggregation-Induced Emission, Volume 3» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Handbook of Aggregation-Induced Emission, Volume 3»

Обсуждение, отзывы о книге «Handbook of Aggregation-Induced Emission, Volume 3» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x