Alexander Peiffer - Vibroacoustic Simulation

Здесь есть возможность читать онлайн «Alexander Peiffer - Vibroacoustic Simulation» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: unrecognised, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Vibroacoustic Simulation: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Vibroacoustic Simulation»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

VIBROACOUSTIC SIMULATION
Learn to master the full range of vibroacoustic simulation using both SEA and hybrid FEM/SEA methods Vibroacoustic Simulation
Vibroacoustic Simulation
Vibroacoustic Simulation

Vibroacoustic Simulation — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Vibroacoustic Simulation», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Using those limits gives

2149 Inserting equation 2149 into 2146 leads to the expression - фото 414(2.149)

Inserting equation ( 2.149) into ( 2.146) leads to the expression

2150 Figure 213Surface integration over piston for radiation impedance - фото 415(2.150)

Figure 213Surface integration over piston for radiation impedance Source - фото 416

Figure 2.13Surface integration over piston for radiation impedance. Source : Alexander Peiffer.

Running through quite a lot of algebraic modifications we get the expression for the impedance of a piston

2151 or 2152 H1z is the Hankel function of first order In Figure 214 - фото 417(2.151)

or

2152 H1z is the Hankel function of first order In Figure 214 the real - фото 418(2.152)

H1(z) is the Hankel function of first order. In Figure 2.14 the real and imaginary parts of the acoustic radiation impedance are compared to those of the pulsating sphere. Both sources have a similar shape except some waviness for the piston resulting from interference effects from the integration over the piston surface. For large kR the impedance is real for both radiators and approaches the acoustic impedance of a plane wave z0=ρ0c0.

Figure 214 Acoustic radiation impedance of the piston Source Alexander - фото 419

Figure 2.14 Acoustic radiation impedance of the piston. Source : Alexander Peiffer.

With Equation ( 2.87) the radiated power of a piston of source strength Q=πR2vz is

2153 The main use of Equation 2153 is that the required velocity to - фото 420(2.153)

The main use of Equation ( 2.153) is that the required velocity to achieve (or prevent) a certain sound power can be calculated from it, for example if one must define the boundary condition for a radiating piston in simulation software and only the radiated power is known.

2.7.3.2 Inertia Effects

The Bessel functions can be approximated by a series in 2kR taking the first series term of both functions (Jacobsen, 2011)

Vibroacoustic Simulation - изображение 421(2.154)

This expression is valid for ka<0.5. From the imaginary part we get for the mass

Vibroacoustic Simulation - изображение 422(2.155)

Assuming a cylindrical volume V=πR2lc of the fluid above the piston we can calculate the length of the moving mass cylinder to be

Vibroacoustic Simulation - изображение 423(2.156)

meaning that at low frequencies the piston is moving a fluid layer of 0.85 times the radius acting as an inertia without radiation.

2.7.4 Power Radiation

For the radiated power calculation of the piston we took the pressure at the piston surface and integrated the pressure–velocity product over the surface. Due to the fact that the velocity is constant the surface integral involves mainly the pressure as a space-dependent property. In case of vibrating structures with complex shapes of vibration the velocity distribution over the surface is not homogeneous, and we need a more detailed approach.

2157 In the above equation a function with argument rr0 is multiplied by - фото 424(2.157)

In the above equation a function with argument (r−r0) is multiplied by the velocity function for r0 and integrated over the two-dimensional space. Mathematically, this can be interpreted as a two-dimensional convolution in space

Vibroacoustic Simulation - изображение 425(2.158)

Thus, when we apply the two-dimensional Fourier transform to the Rayleigh integral the result is the product of the Fourier transform of the vibration shape vz(r0) and the Green’s function in wavenumber space leading to

2159 So we have replaced the expensive convolution operation by a - фото 426(2.159)

So, we have replaced the expensive convolution operation by a multiplication. This simplification is at the cost of two-dimensional Fourier transforms that are required to get the expressions in wavenumber domain.

The time averaged intensity of a sound field is given by the product of pressure and velocity ( 2.45). As the velocity is not uniform over the surface we perform a surface integration over the vibrating area to get the total radiated power

2160 Thus for the determination of radiated power a double area integral is - фото 427(2.160)

Thus, for the determination of radiated power a double area integral is required that may become computationally expensive.

In the above expression we can also switch to the wavenumber domain. In this case the area integration is replaced by an integration over the two-dimensional wavenumber space.

2161 The double integral is replaced by a single twodimensional wavenumber - фото 428(2.161)

The double integral is replaced by a single two-dimensional wavenumber integration. Thus, once the shape function is available the power calculation in wavenumber space is much faster than in real space (Graham, 1996).

2.7.4.1 Radiation Efficiency

The radiation efficiency is a quantity that relates the power of a plane wave to the radiated power of a vibrating surface with same surface averaged velocity. The definition of the radiation efficiency was motivated by experimental procedures because it allows the estimation of the radiated power from the measurements of the vibration velocity. The squared average velocity of a vibrating surface is

Vibroacoustic Simulation - изображение 429(2.162)

and the power radiated by a plane wave through the same area S is given by ( 2.47)

Vibroacoustic Simulation - изображение 430(2.163)

The radiation efficiency is defined as the ratio between the radiated power of a velocity profile vz(r) of a surface S and the standardized power of the plane wave:

2164 The radiation efficiency is used to determine the radiated power of - фото 431(2.164)

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Vibroacoustic Simulation»

Представляем Вашему вниманию похожие книги на «Vibroacoustic Simulation» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Vibroacoustic Simulation»

Обсуждение, отзывы о книге «Vibroacoustic Simulation» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x