Das Sonnensystem ist also wirklich riesengroß. Wenn wir den Pluto erreichen, sind wir von der Sonne - unserer geliebten, warmen, bräunenden, Leben spendenden Sonne - so weit entfernt, dass sie auf die Größe eines Stecknadelkopfes geschrumpft ist. Eigentlich ist sie dann nur noch ein heller Stern. Angesichts einer derart einsamen Leere versteht man besser, wie selbst die bedeutendsten Objekte - beispielsweise der Plutomond -der Aufmerksamkeit so lange entgehen konnten. Der Pluto steht in dieser Hinsicht sicher nicht allein. Bis zu den Voyager-Missionen glaubte man, Neptun habe zwei Monde; Voyager fand sechs weitere. Als ich klein war, kannte man im Sonnensystem insgesamt 30 Monde. Heute steht diese Zahl bei »mindestens 90«, und ungefähr ein Drittel davon wurde erst in den letzten zehn Jahren entdeckt. 15
An eines müssen wir dabei natürlich immer denken:
Wenn wir das Universum als Ganzes betrachten, wissen wir eigentlich noch nicht einmal, was alles zu unserem eigenen Sonnensystem gehört.
Wenn wir am Pluto vorüberfliegen, bedeutet es nichts anderes, als dass wir den Pluto jetzt hinter uns haben.
Denken wir an unseren Reiseplan: Es soll ein Ausflug an den Rand des Sonnensystems werden, und ich fürchte, dort sind wir noch lange nicht angekommen. Pluto mag das letzte Objekt sein, das in den Schulbüchern eingezeichnet ist, aber das System endet dort noch nicht. Das Ende ist noch nicht einmal absehbar. An den Rand des Sonnensystems gelangen wir erst, wenn wir die Oort-Wolke durchquert haben, eine riesige, himmlische Domäne treibender Kometen. Und die Oort-Wolke erreichen wir erst - tut mir Leid - nach weiteren 10000 Jahren. 16Pluto kennzeichnet also keineswegs den äußeren Rand des Sonnensystems, wie die Schulbücher so schamlos behaupten, sondern er liegt auf einem Fünfzigtausendstel des Weges dorthin.
In Wirklichkeit besteht natürlich keinerlei Aussicht auf eine solche Reise. Schon ein Ausflug von 360000 Kilometern zum Mond ist für uns ein großes Unternehmen. Die bemannte Marsmission, die der erste Präsident Bush in einem kurzen Augenblick der Unbesonnenheit forderte, ließ man stillschweigend fallen, nachdem jemand ausgerechnet hatte, dass sie 450 Milliarden Dollar kosten würde und wahrscheinlich den Tod aller Besatzungsmitglieder zur Folge hätte (weil energiereiche Teilchen von der Sonne, die sich nicht abschirmen lassen, ihre DNA in Stücke reißen würden).
Auf Grund dessen, was wir heute wissen und uns vernünftigerweise ausmalen können, besteht absolut keine Aussicht, dass Menschen irgendwann einmal - und zwar wirklich irgendwann - den Rand unseres eigenen Sonnensystems besuchen werden. Er ist einfach zu weit weg. Selbst mit dem Hubble-Teleskop können wir nicht in die Oort-Wolke hineinsehen, und deshalb wissen wir nicht einmal, ob sie sich wirklich dort befindet. Dass sie existiert, ist wahrscheinlich, aber es handelt sich um eine* reine Hypothese.
Über die Oort-Wolke kann man nur eines mit Sicherheit sagen: Sie beginnt irgendwo jenseits des Pluto und erstreckt sich etwa zwei Lichtjahre weit in den Kosmos. Die Grundeinheit für Entfernungen im Sonnensystem ist die astronomische Einheit (astronomical unit oder AU): Sie entspricht der Entfernung von der Sonne zur Erde. Pluto ist ungefähr 40 AU von uns entfernt, zum Mittelpunkt der Oort-Wolke sind es 50000 AU. Mit einem Satz: Sie ist weit weg.
Aber nehmen wir noch einmal an, wir hätten es bis in die Oort-Wolke geschafft. Als Erstes würde uns wahrscheinlich auffallen, wie friedlich hier draußen alles ist. Wir sind jetzt von allem anderen weit entfernt - so weit von unserer Sonne, dass sie nicht einmal der hellste Stern am Himmel ist. Es ist schon ein bemerkenswerter Gedanke: Dieses winzige, blinzelnde Ding hat so viel Schwerkraft, dass es alle Kometen auf ihren Umlaufbahnen hält. Stark ist die Bindung nicht - die Kometen bewegen sich sehr behäbig mit nur rund 350 Stundenkilometern. 18Von Zeit zu Zeit werden einige dieser einsamen Kometen durch eine leichte Störung der Gravitation - vielleicht durch einen vorüberkommenden Stern - aus der Bahn geworfen. Manchmal werden sie dabei auf Nimmerwiedersehen in den leeren Raum geschleudert, manchmal geraten sie aber auch in eine neue, lange Umlaufbahn um die Sonne. Jedes Jahr durchqueren drei bis vier dieser »lang-periodischen« Kometen das innere Sonnensystem. Auf etwas Festes wie die Erde treffen solche unsteten Besucher dabei nur sehr selten. Das ist der Grund, warum wir hier sind: Der Komet, den wir sehen wollten, hat seinen langen Sturz ins Innere des Sonnensystems gerade begonnen. Sein Kurs zielt ausgerechnet auf Manson im US-Bundesstaat Iowa. Bis er dort ankommt, wird noch viel Zeit vergehen -mindestens drei bis vier Millionen Jahre. Vorerst verlassen wir ihn also, aber viel später werden wir ihm wieder begegnen.
Das ist also unser Sonnensystem. Und was gibt es sonst noch da draußen, jenseits seiner Grenzen? Nun, nichts und sehr viel, je nachdem, wie man es betrachtet.
Auf kurze Sicht ist da überhaupt nichts. Das vollkommenste Vakuum, das Menschen jemals erzeugt haben, ist nicht so leer wie die Leere des interstellaren Raumes. 19Und es ist viel von diesem Nichts, bis man wieder auf ein Stückchen von Etwas trifft. Unser nächster Nachbar im Kosmos, Proxima Centauri, der zu einer aus drei Sternen bestehenden Gruppe namens Alpha Centauri gehört, ist 4,3 Lichtjahre entfernt - nach galaktischen Maßstäben ein winziger Sprung, aber doch 100 Millionen Mal weiter als eine Reise zum Mond. Ein Raumschiff würde dorthin mindestens 25000 Jahre brauchen, und selbst wenn man die Reise überstehen würde, wäre dort nichts außer einem einsamen kleinen Sternenhaufen mitten in einem gewaltigen Nichts. Zum Sirius, dem nächsten erwähnenswerten Meilenstein, müsste man noch einmal 4,6 Lichtjahre reisen. Und so würde es weitergehen, wenn man versuchen würde, von Stern zu Stern durch den Kosmos zu hüpfen. Der Weg zur Mitte unserer eigenen Galaxis würde weit mehr Zeit in Anspruch nehmen, als es der Lebensdauer unserer Spezies entspricht.
Noch einmal: Der Weltraum ist riesengroß. Der durchschnittliche Abstand zwischen den Sternen beträgt 32 Millionen Millionen Kilometer. Selbst bei Geschwindigkeiten, die sich der Lichtgeschwindigkeit annähern, wären solche unglaublichen Entfernungen für jeden Reisenden kaum zu überwinden. Natürlich ist es möglich, dass Außerirdische einen Weg von Milliarden Kilometern zurücklegen, um zu ihrer Belustigung Kreise auf Feldern in Wiltshire zu ziehen oder irgendeinen armen Kerl in einem Lieferwagen auf einer einsamen Straße in Arizona zu Tode zu erschrecken (vielleicht waren es ja außerirdische Teenager), aber es hört sich sehr unwahrscheinlich an.
Dennoch besteht statistisch eine große Wahrscheinlichkeit, dass es im Weltraum andere denkende Wesen gibt. Niemand weiß, wie viele Sterne die Milchstraße enthält - die Schätzungen reichen von rund 100 Milliarden bis 400 Milliarden -, und die Milchstraße ist nur eine von rund 140 Milliarden Galaxien, von denen viele sogar größer sind als unsere. In den sechziger Jahren des 20. Jahrhunderts stellte Professor Frank Drake von der Cornell University unter dem Eindruck dieser frappierenden Zahlen eine berühmte Gleichung auf, mit der er auf der Grundlage einer Reihe immer kleiner werdender Wahrscheinlichkeiten die Aussichten auf hoch entwickeltes Leben im Kosmos berechnen wollte.
In Drakes Gleichung teilt man die Zahl der Sterne in einem ausgewählten Teil des Universums durch die Zahl derer, die wahrscheinlich Planetensysteme besitzen werden; das Ergebnis dividiert man durch die Zahl der Planetensysteme, die theoretisch Leben beherbergen könnten; dieses Resultat dividiert man dann durch die Zahl derer, auf denen ein einmal entstandenes Leben sich bis zum Zustand der Intelligenz weiterentwickelt haben könnte; und so weiter. Bei jeder derartigen Division wird die Zahl ungeheuer viel kleiner - aber selbst unter den vorsichtigsten Annahmen stellt sich am Ende heraus, dass die Zahl hoch entwickelter Zivilisationen in der Milchstraße in die Millionen gehen könnte.
Читать дальше