M. Kemal Ozgoren - Kinematics of General Spatial Mechanical Systems
Здесь есть возможность читать онлайн «M. Kemal Ozgoren - Kinematics of General Spatial Mechanical Systems» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: unrecognised, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.
- Название:Kinematics of General Spatial Mechanical Systems
- Автор:
- Жанр:
- Год:неизвестен
- ISBN:нет данных
- Рейтинг книги:4 / 5. Голосов: 1
-
Избранное:Добавить в избранное
- Отзывы:
-
Ваша оценка:
Kinematics of General Spatial Mechanical Systems: краткое содержание, описание и аннотация
Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Kinematics of General Spatial Mechanical Systems»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.
This all-time beneficial book:
Provides an easy-to-use systematic formulation method that is applicable to all sorts of spatial machanisms and manipulators Introduces a symbolic manipulation method, which is effective and straightforward to use, so that kinematic relationships can be simplified by using all the special geometric features of the system Offers an accessible format that uses a systematic and easy-to-conceive notation which has proven successful Presents content written by an author who is a renowned expert in the field Includes an accompanying website Written for academicians, students, engineers, computer scientists and any other people working in the area of spatial mechanisms and manipulators,
provides a clear notation, formulation, and a logical approach to the topic and offers a fresh presentation of challenging material.
is defined so that its magnitude is unity. That is,
can be expressed as follows by means of a unit vector
, which is introduced to indicate the direction of
.
with respect to
.
can only be positive or zero.
with respect to
and
are v and v ′= − v , respectively.
and
are defined to be equal , i.e.
, if they satisfy the following equations simultaneously, in which
.


indicates the direction of the vector
. Equation (1.7)implies the following two situations for the unit vectors
and
.
and
are codirectional , i.e. either coincident or parallel with the same direction.
and
are opposite , i.e. either coincident or parallel with opposite directions.
and
are defined to be opposite , i.e.
, if they are related to each other in either of the following ways.
and
is denoted and defined as follows:
and
. It is denoted as
