M. Kemal Ozgoren - Kinematics of General Spatial Mechanical Systems
Здесь есть возможность читать онлайн «M. Kemal Ozgoren - Kinematics of General Spatial Mechanical Systems» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: unrecognised, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.
- Название:Kinematics of General Spatial Mechanical Systems
- Автор:
- Жанр:
- Год:неизвестен
- ISBN:нет данных
- Рейтинг книги:4 / 5. Голосов: 1
-
Избранное:Добавить в избранное
- Отзывы:
-
Ваша оценка:
Kinematics of General Spatial Mechanical Systems: краткое содержание, описание и аннотация
Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Kinematics of General Spatial Mechanical Systems»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.
This all-time beneficial book:
Provides an easy-to-use systematic formulation method that is applicable to all sorts of spatial machanisms and manipulators Introduces a symbolic manipulation method, which is effective and straightforward to use, so that kinematic relationships can be simplified by using all the special geometric features of the system Offers an accessible format that uses a systematic and easy-to-conceive notation which has proven successful Presents content written by an author who is a renowned expert in the field Includes an accompanying website Written for academicians, students, engineers, computer scientists and any other people working in the area of spatial mechanisms and manipulators,
provides a clear notation, formulation, and a logical approach to the topic and offers a fresh presentation of challenging material.

and
is reversed, Eq. (1.15)becomes

. This verifies the well‐known characteristic feature of the cross product that its outcome changes sign when the order of its multiplicands is reversed. That is,

. The origin of
may also be denoted as O a. The coordinate axes of
are oriented so that each of them is aligned with one member of the following set of three vectors, which is denoted as
and defined as the basis vector triad of
.
, is defined to be orthonormal if its basis vectors are mutually orthogonal and each of them is a unit vector , i.e. a vector normalized to unit magnitude. The orthonormality of
can be expressed by the following set of equations that are obeyed by its basis vectors for all i ∈ {1, 2, 3} and j ∈ {1, 2, 3}.
, is defined to be right‐handed if its basis vectors obey the following set of equations for i ∈ {1, 2, 3}, j ∈ {1, 2, 3}, and k ∈ {1, 2, 3}.



can be resolved in a selected reference frame
as shown below.