M. Kemal Ozgoren - Kinematics of General Spatial Mechanical Systems

Здесь есть возможность читать онлайн «M. Kemal Ozgoren - Kinematics of General Spatial Mechanical Systems» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: unrecognised, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Kinematics of General Spatial Mechanical Systems: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Kinematics of General Spatial Mechanical Systems»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Guide to kinematic theory for the analysis of spatial mechanisms and manipulators Kinematics of General Spatial Mechanical Systems Comprehensive in scope, the book covers topics ranging from rather elementary subjects such as spatial mechanisms with single degree of freedom to more advanced topics such as serial manipulators including redundant and deficient ones, parallel manipulators, and non-holonomic spatial cam mechanisms that involve rolling without slipping motions. The author presents an effective and accessible symbolic manipulation method making it possible to obtain neat and transparent expressions that describe the systems showing all the kinematic details. Such expressions readily lead to analytical or semi-analytical solutions. They also facilitate the identification and analysis of the multiplicities and singularities. 
This all-time beneficial book:
Provides an easy-to-use systematic formulation method that is applicable to all sorts of spatial machanisms and manipulators Introduces a symbolic manipulation method, which is effective and straightforward to use, so that kinematic relationships can be simplified by using all the special geometric features of the system Offers an accessible format that uses a systematic and easy-to-conceive notation which has proven successful Presents content written by an author who is a renowned expert in the field Includes an accompanying website Written for academicians, students, engineers, computer scientists and any other people working in the area of spatial mechanisms and manipulators,
provides a clear notation, formulation, and a logical approach to the topic and offers a fresh presentation of challenging material.

Kinematics of General Spatial Mechanical Systems — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Kinematics of General Spatial Mechanical Systems», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

(1.18) Kinematics of General Spatial Mechanical Systems - изображение 369

If the order of and is reversed Eq 115becomes 119 According to Eq 11 - фото 370and is reversed Eq 115becomes 119 According to Eq 112 θ qp θ pq - фото 371is reversed, Eq. (1.15)becomes

(1.19) Kinematics of General Spatial Mechanical Systems - изображение 372

According to Eq. (1.12), θ qp= θ pq. However, according to the right‐hand rule,

(1.20) Kinematics of General Spatial Mechanical Systems - изображение 373

Therefore, Kinematics of General Spatial Mechanical Systems - изображение 374. This verifies the well‐known characteristic feature of the cross product that its outcome changes sign when the order of its multiplicands is reversed. That is,

(1.21) Kinematics of General Spatial Mechanical Systems - изображение 375

1.4 Reference Frames

In the three‐dimensional Euclidean space, a reference frame is defined as an entity that consists of an origin and three distinct noncoplanar axes emanating from the origin. The origin is a specified point and the axes have specified orientations. More specifically, the axes of a reference frame are called its coordinate axes . For the sake of verbal brevity, a reference frame may sometimes be called simply a frame . A reference frame, such as the one shown in Figure 1.1, may be denoted in one of the following ways, which convey different amounts of information about its specific features.

(1.22) Figure 11A reference frame In Eq 122 A is the origin of - фото 376

Figure 11A reference frame In Eq 122 A is the origin of The origin of - фото 377

Figure 1.1A reference frame.

In Eq. (1.22), A is the origin of картинка 378. The origin of картинка 379may also be denoted as O a. The coordinate axes of картинка 380are oriented so that each of them is aligned with one member of the following set of three vectors, which is denoted as and defined as the basis vector triad of 123 All - фото 381and defined as the basis vector triad of 123 All the reference frames that are used in this book are selected to - фото 382.

(1.23) All the reference frames that are used in this book are selected to be - фото 383

All the reference frames that are used in this book are selected to be orthonormal , right‐handed , and equally scaled on their axes.

A reference frame, say картинка 384, is defined to be orthonormal if its basis vectors are mutually orthogonal and each of them is a unit vector , i.e. a vector normalized to unit magnitude. The orthonormality of can be expressed by the following set of equations that are obeyed by its basis - фото 385can be expressed by the following set of equations that are obeyed by its basis vectors for all i ∈ {1, 2, 3} and j ∈ {1, 2, 3}.

(1.24) In Eq 124 δ ijis defined as the dot product index function which is also - фото 386

In Eq. (1.24), δ ijis defined as the dot product index function , which is also known as the Kronecker delta function of the indices i and j .

A reference frame, say картинка 387, is defined to be right‐handed if its basis vectors obey the following set of equations for i ∈ {1, 2, 3}, j ∈ {1, 2, 3}, and k ∈ {1, 2, 3}.

(1.25) In Eq 125 ε ijkis defined as the cross product index function which is - фото 388

In Eq. (1.25), ε ijkis defined as the cross product index function , which is also known as the Levi‐Civita epsilon function of the indices i , j , and k . It is defined as follows:

(1.26) Of course the cross product formula in Eq 125produces nonzero results only - фото 389

Of course, the cross product formula in Eq. (1.25)produces nonzero results only if the indices i , j , and k are all distinct. Therefore, by allowing the indices i , j , and k to assume only distinct values, i.e. by allowing ijk to be only such that ijk ∈ {123, 231, 312; 321, 132, 213}, the considered cross product can also be expressed by the following simpler formula, which does not require a summation operation.

(1.27) In Eq 127 σ ijkis designated as the cross product sign variable which is - фото 390

In Eq. (1.27), σ ijkis designated as the cross product sign variable , which is defined as follows only for the distinct values of the indices i , j , and k .

(1.28) 15 Representation of a Vector in a Selected Reference Frame A vector can be - фото 391

1.5 Representation of a Vector in a Selected Reference Frame

A vector can be resolved in a selected reference frame as shown below 129 - фото 392can be resolved in a selected reference frame as shown below 129 Owing to the numerical index notation Eq 129can - фото 393as shown below.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Kinematics of General Spatial Mechanical Systems»

Представляем Вашему вниманию похожие книги на «Kinematics of General Spatial Mechanical Systems» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Kinematics of General Spatial Mechanical Systems»

Обсуждение, отзывы о книге «Kinematics of General Spatial Mechanical Systems» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x