Ashish Tewari - Foundations of Space Dynamics

Здесь есть возможность читать онлайн «Ashish Tewari - Foundations of Space Dynamics» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: unrecognised, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Foundations of Space Dynamics: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Foundations of Space Dynamics»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Foundations of Space Dynamics offers an authoritative text that combines a comprehensive review of both orbital mechanics and dynamics. The author—a noted expert on the topic—covers up-to-date topics including: orbital perturbations, Lambert's transfer, formation flying, and gravity-gradient stabilization. The text provides an introduction to space dynamics in its entirety, including important analytical derivations and practical space flight examples. Written in an accessible and concise style, Foundations of Space Dynamics highlights analytical development and rigor, rather than numerical solutions via ready-made computer codes. To enhance learning, the book is filled with helpful tables, figures, exercises, and solved examples. This important book: Covers space dynamics with a systematic and comprehensive approach Designed to be a practical text filled with real-world examples Contains information on the most current applications Includes up-to-date topics from orbital perturbations to gravity-gradient stabilization Offers a deep understanding of space dynamics often lacking in other textbooks Written for undergraduate and graduate students and professionals in aerospace engineering, Foundations of Space Dynamics offers an introduction to the most current information on orbital mechanics and dynamics.

Foundations of Space Dynamics — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Foundations of Space Dynamics», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

(2.102) If the mass density at the location of the elemental mass is given by then - фото 577

If the mass density at the location of the elemental mass is given by then the elemental mass is the following 2103 The angle b - фото 578, then the elemental mass is the following:

(2.103) The angle between and - фото 579

The angle картинка 580between картинка 581, and Fig 24 is related to the spherical coordinates by the following cosine law - фото 582(Fig. 2.4) is related to the spherical coordinates by the following cosine law of the scalar product of two vectors:

Figure 25Spherical coordinates for the gravitational potential of a body To - фото 583 Figure 25Spherical coordinates for the gravitational potential of a body To - фото 584

Figure 2.5Spherical coordinates for the gravitational potential of a body.

To derive the gravitational potential given by Eq. (2.94)in spherical coordinates, it is necessary to expand the cosine law ( Eq. 2.104) in terms of the Legendre polynomials. To do so, consider the following associated Legendre functions of the first kind, degree and order Abramowitz and Stegun 1974 2104 where - фото 585and order Abramowitz and Stegun 1974 2104 where is the Legendre pol - фото 586(Abramowitz and Stegun 1974):

(2.104) where is the Legendre polynomial of degree Some of the commonly used - фото 587

where картинка 588is the Legendre polynomial of degree Some of the commonly used associated Legendre functions are In terms of the - фото 589. Some of the commonly used associated Legendre functions are

In terms of the associated Legendre functions and the Legendre polynomials of - фото 590

In terms of the associated Legendre functions and the Legendre polynomials of the first degree, Eq. 2.104becomes

(2.105) which is referred to as the addition theorem for the Legendre polynomials of - фото 591

which is referred to as the addition theorem for the Legendre polynomials of the first degree, картинка 592. In terms of the Legendre polynomials of the second degree, we have 2106 which is the addition theorem for the Legendre polynomials - фото 593, we have

(2.106) which is the addition theorem for the Legendre polynomials of the second - фото 594

which is the addition theorem for the Legendre polynomials of the second degree, картинка 595. Extending this procedure leads to the following addition theorem for the Legendre polynomials of degree 2107 The substitution of the addition theorem into Eq - фото 596, 2107 The substitution of the addition theorem into Eq 294results in - фото 597:

(2.107) The substitution of the addition theorem into Eq 294results in the - фото 598

The substitution of the addition theorem into Eq. (2.94)results in the following expansion of the gravitational potential:

(2.108) where 2109 2110 2111 - фото 599

where

(2.109) 2110 2111 with - фото 600

(2.110) 2111 with denoting the maximum radial extent of the bod - фото 601

(2.111) with denoting the maximum radial extent of the body The mass of the body is - фото 602

with denoting the maximum radial extent of the body The mass of the body is - фото 603denoting the maximum radial extent of the body. The mass of the body is evaluated by

(2.112) Equation 2108 is a general expansion of the gravitational potential which - фото 604

Equation ( 2.108) is a general expansion of the gravitational potential which can be applied to a body of an arbitrary shape and an arbitrary mass distribution. However, the evaluation of the series coefficients by Eqs. ( 2.109)–( 2.111) is often a difficult exercise for a body of a complicated shape, and requires experimental determination (such as the acceleration measurements by a low‐orbiting satellite).

2.7.3 Axisymmetric Body

A body whose mass is symmetrically distributed about the polar axis, Foundations of Space Dynamics - изображение 605, has its density varying only with the radius and the latitude; that is, Foundations of Space Dynamics - изображение 606. Upon neglecting the longitudinal картинка 607variations in the mass distribution, the additional theorem for the Legendre polynomial of degree Eq 2107 becomes the following 2113 whose substitution into the - фото 608, Eq. (2.107), becomes the following:

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Foundations of Space Dynamics»

Представляем Вашему вниманию похожие книги на «Foundations of Space Dynamics» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Foundations of Space Dynamics»

Обсуждение, отзывы о книге «Foundations of Space Dynamics» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x