Robert Bartoszynski - Probability and Statistical Inference
Здесь есть возможность читать онлайн «Robert Bartoszynski - Probability and Statistical Inference» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: unrecognised, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.
- Название:Probability and Statistical Inference
- Автор:
- Жанр:
- Год:неизвестен
- ISBN:нет данных
- Рейтинг книги:4 / 5. Голосов: 1
-
Избранное:Добавить в избранное
- Отзывы:
-
Ваша оценка:
Probability and Statistical Inference: краткое содержание, описание и аннотация
Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Probability and Statistical Inference»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.
Probability and Statistical Inference, Third Edition
Probability and Statistical Inference
defined on a field
satisfies the axioms of probability? Specifically, the problem concerns the axiom of countable additivity, which asserts that if events
are disjoint, then
is defined on a field, then there is no guarantee that the left‐hand side of formula ( (2.11)) makes sense, since
need not belong to the field of events on which
is defined. The meaning of the assumption of Theorem 2.6.3is that formula ( 2.11) is true whenever the union
belongs to the field on which
is defined.
is to represent
as a limit of some sequence of events whose probabilities can be computed, and then pass to the limit. Theorem 2.6.3asserts that this procedure will give the same result, regardless of the choice of sequence of events approximating the event
.
. A probability measure
on
can be defined as follows: let
be a function such that
for all
and
. We will assume in addition that
is continuous and bounded, although those conditions can be greatly relaxed in general theory.
by putting
is referred to as a density of
). The full justification of this construction lies beyond the scope of this book, but we will give the main points. First, the definition ( 2.12) is applicable for all intervals
of the form
, and so on. Then we can extend
to finite unions of disjoint intervals by additivity (the class of all such finite unions forms a field). We can easily check that such an extension is unique; that is,
is partitioned into the finite union of nonoverlapping intervals
. This provides an extension of
to the smallest field of sets containing all intervals. If we show that
defined this way is continuous on the empty set, then we can claim that there exists an extension of
to the smallest
‐field of sets containing all intervals.
and
. In the first case,
, where
is a bound for function
. In the second case,
.