Robert Bartoszynski - Probability and Statistical Inference

Здесь есть возможность читать онлайн «Robert Bartoszynski - Probability and Statistical Inference» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: unrecognised, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Probability and Statistical Inference: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Probability and Statistical Inference»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Updated classic statistics text, with new problems and examples
Probability and Statistical Inference, Third Edition
Probability and Statistical Inference 

Probability and Statistical Inference — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Probability and Statistical Inference», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Solution

Either Paul tosses more heads than Peter (event картинка 675) or he tosses more tails than Peter (event картинка 676). These two events exclude one another and exhaust all possibilities (since one cannot have ties in number of heads and number of tails). Switching the role of heads and tails transforms one of these events into the other. Thus, sample space becomes partitioned into two equiprobable events, and we must have Probability and Statistical Inference - изображение 677.

The use of ( 2.7) requires techniques for counting the numbers of elements in some sets. These topics, known under the name combinatorics , will be discussed in Chapter 3.

Problems

1 2.5.1 A coin is tossed seven times. Assume that each of the possible outcomes (sequences like HTTHHTH of length 7) is equally likely. Relate each outcome to a binary number by replacing H by 1 and T by 0, for example, THHHTTH is 0111001 = 57. Find the probability that a number generated in this way lies between 64 and 95 (inclusive on both sides).

2 2.5.2 A number is chosen at random from the series 4, 9, 14, 19, …, and another number is chosen from the series 1, 5, 9, 13, …. Each series has 100 terms. Find .

3 2.5.3 A regular die and a die with 2, 3, 5, 6, 7, and 8 dots are tossed together, and the total number of dots is noted. What is the probability that the sum is greater than or equal to 10?

4 2.5.4 Use formula ( 2.6) to find the number of primes not exceeding 100. [Hint: Assume that you sample one of the numbers 1, 2, …, 100. Let be the event “the number sampled is divisible by .” Determine . Then the answer to the problem is (why?).]

2.6 Necessity of the Axioms*

Looking at Axiom 3, one may wonder why do we need it for the case of countable (and not just finite) sequences of events. Indeed, the necessity of all three axioms, with only finite additivity in Axiom 3, can be easily justified simply by using probability to represent the limiting relative frequency of occurrences of events. Recall the symbol картинка 678from Section 2.1for the number of occurrences of the event картинка 679in the first картинка 680experiments. The nonnegativity axiom is simply a reflection of the fact that the count картинка 681cannot be negative. The norming axiom reflects the fact that event Probability and Statistical Inference - изображение 682is certain and must occur in every experiment so that Probability and Statistical Inference - изображение 683, and hence, Probability and Statistical Inference - изображение 684. Finally, (taking the case of two disjoint events and we have since whenever - фото 685and we have since whenever occurs - фото 686), we have since whenever occurs does not and conversely Thus if probability is to - фото 687, since whenever картинка 688occurs, Probability and Statistical Inference - изображение 689does not, and conversely. Thus, if probability is to reflect the limiting relative frequency, then Probability and Statistical Inference - изображение 690should be equal to Probability and Statistical Inference - изображение 691, since the frequencies satisfy the analogous condition The need for countable additivity however cannot be explained so simply - фото 692.

The need for countable additivity, however, cannot be explained so simply. This need is related to the fact that to build a sufficiently powerful theory, one needs to take limits. If Probability and Statistical Inference - изображение 693is a monotone sequence of events (increasing or decreasing, i.e., Probability and Statistical Inference - изображение 694or Probability and Statistical Inference - изображение 695) then where the event has been defined in Section 14 Upon a little reflection - фото 696, where the event картинка 697has been defined in Section 1.4. Upon a little reflection, one can see that such continuity is a very natural requirement. In fact, the same requirement has been taken for granted for over 2,000 years in a somewhat different context: in computing the area of a circle, one uses a sequence of polygons with an increasing number of sides, all inscribed in the circle. This leads to an increasing sequence of sets “converging” to the circle, and therefore the area of the circle is taken to be the limit of the areas of approximating polygons. The validity of this idea (i.e., the assumption of the continuity of the function картинка 698= area of картинка 699) was not really questioned until the beginning of the twentieth century. Research on the subject culminated with the results of Lebesgue.

To quote the relevant theorem, let us say that a function картинка 700, defined on a class of sets (events), is continuous from below at the set Probability and Statistical Inference - изображение 701if the conditions Probability and Statistical Inference - изображение 702and Probability and Statistical Inference - изображение 703imply that Probability and Statistical Inference - изображение 704. Similarly, Probability and Statistical Inference - изображение 705is continuous from above at the set Probability and Statistical Inference - изображение 706if the conditions Probability and Statistical Inference - изображение 707and Probability and Statistical Inference - изображение 708imply Probability and Statistical Inference - изображение 709. A function that is continuous at every set from above or from below is simply called continuous (above or below). Continuity from below and from above is simply referred to as continuity .

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Probability and Statistical Inference»

Представляем Вашему вниманию похожие книги на «Probability and Statistical Inference» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Probability and Statistical Inference»

Обсуждение, отзывы о книге «Probability and Statistical Inference» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x