Robert Bartoszynski - Probability and Statistical Inference

Здесь есть возможность читать онлайн «Robert Bartoszynski - Probability and Statistical Inference» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: unrecognised, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Probability and Statistical Inference: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Probability and Statistical Inference»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Updated classic statistics text, with new problems and examples
Probability and Statistical Inference, Third Edition
Probability and Statistical Inference 

Probability and Statistical Inference — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Probability and Statistical Inference», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать
Paraphrasing the assertion of the lemma if probabilities of events decrease to - фото 747

Paraphrasing the assertion of the lemma, if probabilities of events картинка 748decrease to zero fast enough to make the series converge, then with probability 1 only finitely many among events картинка 749will occur. We will prove the converse (under an additional assumption), known as the second Borel–Cantelli lemma, in Chapter 4.

In the remainder of this section, we will discuss some theoretical issues related to defining probability in practical situations. Let us start with the observation that the analysis above should leave some more perceptive readers disturbed. Clearly, one should not write a formula without being certain that it is well defined. In particular, when writing картинка 750two things ought to be certain: (1) that what appears in the parentheses is a legitimate object of probability, that is, an event and (2) that the function картинка 751is defined unambiguously at this event.

With regard to the first point, the situation is rather simple. All reasonable questions concern events such as Probability and Statistical Inference - изображение 752and Probability and Statistical Inference - изображение 753, and hence events obtained by taking countable unions, countable intersections, and complementations of the events Probability and Statistical Inference - изображение 754. Thus, the events whose probabilities are discussed belong to the smallest Probability and Statistical Inference - изображение 755‐field containing all the events Probability and Statistical Inference - изображение 756(see Definition 1.4.2 and Theorem 1.4.3). Consequently, to make the formulas at least apparently legitimate, it is sufficient to assume that the class of all the events under considerations is a картинка 757‐field, and that probability is a function satisfying the probability axioms defined on this картинка 758‐field.

This assumption alone, however, is not enough to safeguard us from possible trouble. Let us consider the following hypothetical situation: Suppose that we do not know how to calculate the area of a circle. We could start from the beginning and define the areas of simple figures: first rectangles, then pass to right triangle, and then to arbitrary triangles, which could be reduced to sums and differences of right triangles. From there, the concept of area could be extended to figures that could be triangulated. It is a simple matter to show that the area of such a figure does not depend on how it is triangulated.

From here, we may pass to areas of more complicated figures, the first of these being the circle. The area of the latter could be calculated by inscribing a square in it, and then taking areas of regular polygons with Probability and Statistical Inference - изображение 759sides and passing to the limit. The result is Probability and Statistical Inference - изображение 760. The same result is obtained if we start by inscribing an equilateral triangle, and then take limits of the areas of regular polygons with Probability and Statistical Inference - изображение 761sides. The same procedure could be tried with an approximation from above, that is, starting with a square or equilateral triangle circumscribed on the circle. Still the limit is картинка 762. We could then be tempted to conclude that the area of the circle is картинка 763. The result is, of course, true, but how do we know that we will obtain the limit always equal to картинка 764, regardless of the way of approximating the circle? What if we start, say, from an irregular seven‐sided polygon, and then triple the number of sides in each step?

A similar situation occurs very often in probability: Typically, we can define probabilities on “simple” events, corresponding to rectangles in geometry, and we can extend this definition without ambiguity to finite unions of the simple events (“rectangles”). The existence and uniqueness of a probability of all the events from the minimal картинка 765‐field containing the “rectangles” is ensured by the following theorem, which we state here without proof.

Theorem 2.6.3 If P is a function defined on a field of events картинка 766 satisfying the probability axioms (including countable additivity), then P can be extended in a unique way to a function satisfying the probability axioms, defined on the minimal картинка 767 ‐field containing картинка 768.

This means that if the function картинка 769is defined on a field картинка 770of events and satisfies all the axioms of probability, and if картинка 771is the smallest картинка 772‐field containing all sets in картинка 773, then there exists exactly one function Probability and Statistical Inference - изображение 774defined on Probability and Statistical Inference - изображение 775that satisfies the probability axioms, and Probability and Statistical Inference - изображение 776if картинка 777.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Probability and Statistical Inference»

Представляем Вашему вниманию похожие книги на «Probability and Statistical Inference» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Probability and Statistical Inference»

Обсуждение, отзывы о книге «Probability and Statistical Inference» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x