Robert Bartoszynski - Probability and Statistical Inference

Здесь есть возможность читать онлайн «Robert Bartoszynski - Probability and Statistical Inference» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: unrecognised, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Probability and Statistical Inference: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Probability and Statistical Inference»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Updated classic statistics text, with new problems and examples
Probability and Statistical Inference, Third Edition
Probability and Statistical Inference 

Probability and Statistical Inference — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Probability and Statistical Inference», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

From Figure 2.1, it is clear that the point of hit must lie somewhere in the shaded annulus Its area is so that Of course the assumption under which this solutio - фото 600. Its area is so that Of course the assumption under which this solution is obtained is - фото 601so that Of course the assumption under which this solution is obtained is not very - фото 602. Of course, the assumption under which this solution is obtained is not very realistic: typically sets closer to the center are more likely to be hit than sets of the same area located closer to the perimeter.

The concept of “random choice” from an uncountable set is sometimes ambiguous. This is illustrated by the next example.

Example 2.2 Bertrand's Paradox

A chord is chosen at random in a circle. What is the probability that the length of the chord will exceed the length of the side of an equilateral triangle inscribed in the circle?

This problem was originally posed in 1888 by Joseph Bertrand, a French mathematician, who provided three solutions, all valid, but yielding inconsistent results.

Solution 1

The chord is uniquely determined by the angle картинка 603(see Figure 2.2). These angles are chosen at random from the interval картинка 604. It is clear that the length of the chord exceeds the side of the equilateral triangle if картинка 605lies between картинка 606and so the answer to the question is Figure 22First solution of Bertr - фото 607, so the answer to the question is Figure 22First solution of Bertrands problem Solution 2 Let us draw a - фото 608.

Figure 22First solution of Bertrands problem Solution 2 Let us draw a - фото 609

Figure 2.2First solution of Bertrand's problem.

Solution 2

Let us draw a diameter картинка 610(see Figure 2.3) perpendicular to the chord картинка 611. Then, the length of the chord exceeds the side of the equilateral triangle if it intersects the line картинка 612between points Probability and Statistical Inference - изображение 613and Probability and Statistical Inference - изображение 614. Elementary calculations give Probability and Statistical Inference - изображение 615, so the answer is Figure 23Second solution of Bertrands problem Solution 3 The location - фото 616.

Figure 23Second solution of Bertrands problem Solution 3 The location of - фото 617

Figure 2.3Second solution of Bertrand's problem.

Solution 3

The location of the chord is uniquely determined by the location of its center (except when the center coincides with the center of the circle, which is an event with probability zero). For the chord to be longer than the side of the equilateral triangle inscribed in the circle, its center must fall somewhere inside the shaded circle in Figure 2.4. Again, by elementary calculations, we obtain probability Figure 24Third solution of Bertrands problem The discovery of - фото 618.

Figure 24Third solution of Bertrands problem The discovery of Bertrands - фото 619

Figure 2.4Third solution of Bertrand's problem.

The discovery of Bertrand's paradox was one of the impulses that made researchers in probability and statistics acutely aware of the need to clarify the foundations of the theory, and ultimately led to the publication of Kolmogorov's book (1933). In the particular instance of the Bertrand “paradoxes,” they are explained simply by the fact that each of the solutions refers to a different sampling scheme: (1) choosing a point on the circumference and then choosing the angle between the chord and the tangent at the point selected, (2) choosing a diameter perpendicular to the chord and then selecting the point of intersection of the chord with this diameter, and (3) choosing a center of the chord. Random choice according to one of these schemes is not equivalent to a random choice according to the other two schemes.

To see why it is so, we will show that the first and second scheme are not equivalent. The analogous arguments for the other two possible pairs of schemes are left as an exercise.

Figure 25Explanation of Bertrands paradox Example 23 Imagine different - фото 620

Figure 2.5Explanation of Bertrand's paradox.

Example 2.3

Imagine different devices (physical mechanisms, computer programs, etc.) built for sampling random chords. One scheme chooses a point on the circumference, and then the angle картинка 621between the chord and the tangent to the circle at the point chosen ( Figure 2.2). The second scheme chooses first the direction of the diameter and then the point картинка 622on the diameter, at which the chord perpendicular to this diameter intersects it ( Figure 2.3). From Figure 2.5, it is seen that the angle Probability and Statistical Inference - изображение 623is Probability and Statistical Inference - изображение 624, and therefore Probability and Statistical Inference - изображение 625. Thus, Probability and Statistical Inference - изображение 626, which means that equal changes of картинка 627do not produce equal changes of картинка 628. In fact, these changes are smaller when картинка 629is small. Consequently, a device that chooses angles картинка 630at random will tend to produce more intersections of the diameter that are farther from the center (i.e., more chords will be shorter).

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Probability and Statistical Inference»

Представляем Вашему вниманию похожие книги на «Probability and Statistical Inference» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Probability and Statistical Inference»

Обсуждение, отзывы о книге «Probability and Statistical Inference» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x