Robert Bartoszynski - Probability and Statistical Inference

Здесь есть возможность читать онлайн «Robert Bartoszynski - Probability and Statistical Inference» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: unrecognised, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Probability and Statistical Inference: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Probability and Statistical Inference»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Updated classic statistics text, with new problems and examples
Probability and Statistical Inference, Third Edition
Probability and Statistical Inference 

Probability and Statistical Inference — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Probability and Statistical Inference», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Example 1.21

A point moves randomly on the plane, and its location is recorded at some time картинка 515. The outcome of this experiment is the pair картинка 516of coordinates of the observed location of the point (e.g., imagine here the location of a particle of dust in a liquid, tossed about by random hits from molecules of the medium, and performing Brownian motion; or imagine a location of a previously marked bird at the time of its capture in a bird migration study or the ages of both husband and wife at the time one of them dies).

In any study of this kind (regardless of its ultimate purpose), the “natural” sample space is a plane or part of the plane the positive quadrant etc The simple - фото 517is a plane or part of the plane, (the positive quadrant, etc.). The “simple” events here are of the form that is rectangles with sides parallel to the axes The reason for - фото 518, that is, rectangles with sides parallel to the axes. The reason for distinguishing these events as “simple” is that, as will be explained in later chapters, it is often easy to assign probabilities to these events. The reason for the particular configuration of strict and nonstrict inequalities (i.e., north and east side included, south and west side excluded) will also become apparent from the analysis below. To simplify the language, we will call such events Rectangles, and use a capital letter to signify the specific assumption about which sides are included and which are not. Naturally, we will allow for infinite Rectangles, such as It is easy to determine the field generated by all Rectangles These are - фото 519.

It is easy to determine the field generated by all Rectangles: These are events that result from finite operations on Rectangles. Clearly, the complement of a Rectangle is a union of at most eight disjoint (infinite) Rectangles (see Figure 1.7), whereas the intersection of Rectangles is again a Rectangle (or is empty). Since unions are reduced to intersections of complements by De Morgan's laws, every element of the smallest field containing all Rectangles is the union of a finite number of disjoint Rectangles. On the other hand, there exist events that do not belong to this field of events. As a simple example, one might be interested in the event that the point картинка 520lies within distance картинка 521from some fixed point (from the initial location of the particle, the point of release of the bird, etc.). This event is a circle on the plane, and hence a subset of картинка 522which is not decomposable into a finite number of Rectangles. On the other hand, a circle does belong to the field spanned by Rectangles it is representable as a countable union of - фото 523‐field spanned by Rectangles: it is representable as a countable union of Rectangles, or equivalently, as an infinite intersection of sets built up of Rectangles.

Figure 17Complement of a Rectangle Similarly in this example there are other - фото 524

Figure 1.7Complement of a Rectangle.

Similarly, in this example there are other events, which are not in the field generated by Rectangles and which could be considered, such as triangles, rectangles with sides not parallel to the axes, and ellipses.

Example 1.22

Take an experiment consisting of tossing a coin infinitely many times. The “natural” sample space Probability and Statistical Inference - изображение 525is the space of all infinite sequences Probability and Statistical Inference - изображение 526where картинка 527or 1 (or any other two distinct symbols representing heads and tails). The “simple” events here are of the form “heads on the Probability and Statistical Inference - изображение 528th toss,” that is, sets of all infinite sequences Probability and Statistical Inference - изображение 529with the картинка 530th coordinate картинка 531satisfying Probability and Statistical Inference - изображение 532. The events in the field generated by the simple events are of the form “heads on tosses Probability and Statistical Inference - изображение 533and tails on tosses Probability and Statistical Inference - изображение 534,” with both картинка 535and картинка 536finite and the outcomes of all other tosses remaining unspecified.

An event that does not belong to this field, but does belong to the картинка 537‐field generated by the simple events, is the event that “as the number of tosses increases, the frequency of heads approaches a limit.” Clearly, to determine whether or not this event occurs, it does not suffice to know any finite number of coordinates картинка 538.

To generalize this example, replace the outcome of the coin tosses by the result of some experiment repeated infinitely many times. This way the coordinate картинка 539carries more information than it does for the outcome of Probability and Statistical Inference - изображение 540th coin toss. The “simple” events are now of the form of sets of sequences Probability and Statistical Inference - изображение 541with Probability and Statistical Inference - изображение 542for Probability and Statistical Inference - изображение 543, while the Probability and Statistical Inference - изображение 544's for Probability and Statistical Inference - изображение 545are unconstrained. Here Probability and Statistical Inference - изображение 546are events that occur at the first картинка 547times of observations. The “simple” events described above, of an obvious interest and importance both in applications and in building the theory, are called “cylinder” events. The smallest картинка 548‐field containing all cylinder events comprises all events that may be of interest, including those that are obtained through limits of sequences of cylinder events.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Probability and Statistical Inference»

Представляем Вашему вниманию похожие книги на «Probability and Statistical Inference» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Probability and Statistical Inference»

Обсуждение, отзывы о книге «Probability and Statistical Inference» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x