Robert Bartoszynski - Probability and Statistical Inference
Здесь есть возможность читать онлайн «Robert Bartoszynski - Probability and Statistical Inference» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: unrecognised, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.
- Название:Probability and Statistical Inference
- Автор:
- Жанр:
- Год:неизвестен
- ISBN:нет данных
- Рейтинг книги:4 / 5. Голосов: 1
-
Избранное:Добавить в избранное
- Отзывы:
-
Ваша оценка:
Probability and Statistical Inference: краткое содержание, описание и аннотация
Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Probability and Statistical Inference»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.
Probability and Statistical Inference, Third Edition
Probability and Statistical Inference
‐fields. This is illustrated by the following example:
and let
be the class of all subsets
of
such that either
or
is finite. Then
is a field but not a
‐field. First, if
then
because the definition of
is symmetric with respect to complementation. Next, if
and
are both in
, so is their union. If
and
are both finite, then
is finite and hence belongs to
. On the other hand, if either
or
(or both) are finite, then
is also finite because it is contained in
and also in
.
is a field. However,
is not a
‐field. Let
be the set consisting only of the element
(i.e.,
). Clearly,
. Take now
. This is a countable union of sets in
that is not in
since the set of all even numbers is not finite, nor does it have a finite complement.
‐field can be difficult. On the other hand, it is sometimes easy to verify that a class of sets is a monotone class.
‐field is a monotone class. Conversely, a field that is a monotone class is a
‐field.
is a
‐field, and let
be a monotone sequence of elements of
. If
then
, whereas if
then
So
is a monotone class. On the other hand, let
be a monotone class and a field, and let
be an arbitrary sequence of elements of
. Put
. Then since
is a field, and also
for every
. Further, since
is a monotone class,
. However,
, so
is a
‐field, as asserted.