Robert Bartoszynski - Probability and Statistical Inference
Здесь есть возможность читать онлайн «Robert Bartoszynski - Probability and Statistical Inference» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: unrecognised, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.
- Название:Probability and Statistical Inference
- Автор:
- Жанр:
- Год:неизвестен
- ISBN:нет данных
- Рейтинг книги:4 / 5. Голосов: 1
-
Избранное:Добавить в избранное
- Отзывы:
-
Ваша оценка:
Probability and Statistical Inference: краткое содержание, описание и аннотация
Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Probability and Statistical Inference»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.
Probability and Statistical Inference, Third Edition
Probability and Statistical Inference
‐field, or monotone class) containing a given set or collection of sets. We begin with some examples.
be any set. On one extreme, the class consisting of two sets,
and
, is closed under any operation so that
is a field, a
‐field, and a monotone class. On the other extreme, the class of all subsets of
is also closed under any operations, finite or not, and hence is a field, a
‐field, and a monotone class. These two classes of subsets of
form the smallest and the largest fields (
‐field, monotone class).
, it is easy to check that the class
, consisting of the four events
, is closed under any operations: unions, intersections, and complements of members of
are again members of
. This class is an example of a field (
‐field, monotone class) that contains the events
and
, and it is the smallest such field (
‐field, monotone class).
, consisting of events
, is a monotone class, but neither a field nor
‐field. If
and
are two events, then the smallest field
containing
and
must contain also the sets
, the intersections
, as well as their unions
and
. The closure property implies that unions such as
, must also belong to
.
of subsets of
, there exists a unique smallest field (
‐field, monotone class) containing all sets in
. It is called the field (
‐field, monotone class) generated by
.
and
are fields, then their intersection
(i.e., the class of sets that belong to both
and
) is also a field. For instance, if
(
, then
because each
is a field, and consequently
. A similar argument holds for intersections and complements.