Michael H. Veatch - Linear and Convex Optimization
Здесь есть возможность читать онлайн «Michael H. Veatch - Linear and Convex Optimization» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: unrecognised, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.
- Название:Linear and Convex Optimization
- Автор:
- Жанр:
- Год:неизвестен
- ISBN:нет данных
- Рейтинг книги:3 / 5. Голосов: 1
-
Избранное:Добавить в избранное
- Отзывы:
-
Ваша оценка:
Linear and Convex Optimization: краткое содержание, описание и аннотация
Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Linear and Convex Optimization»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.
The book offers a breadth of recent applications to demonstrate the many areas in which optimization is successfully and frequently used, while the process of formulating optimization problems is addressed throughout.
Linear and Convex Optimization Coverage of current methods in optimization in a style and level that remains appealing and accessible for mathematically trained undergraduates Enhanced insights into a few algorithms, instead of presenting many algorithms in cursory fashion An emphasis on the formulation of large, data-driven optimization problems Inclusion of linear, integer, and convex optimization, covering many practically solvable problems using algorithms that share many of the same concepts Presentation of a broad range of applications to fields like online marketing, disaster response, humanitarian development, public sector planning, health delivery, manufacturing, and supply chain management Ideal for upper level undergraduate mathematics majors with an interest in practical applications of mathematics, this book will also appeal to business, economics, computer science, and operations research majors with at least two years of mathematics training.
and objective function
can be stated abstractly in terms of a feasible region
as
decision variables,
and
functional constraints. The constraints can use a mixture of “
”, “
”, and “
”. Each variable may have the bound
,
, or no bound, which we call unrestricted in sign (u.r.s.). The distinguishing characteristics of a linear program are (i) the objective function and all constraints are linear functions and (ii) the variables are continuous, i.e. fractional values are allowed. They are often useful as approximate models even when these assumptions do not fully hold.
,
,
, and
,
, and
are column vectors. If all the constraints are equalities, they can be written
. Similarly, “
” constraints can be written
.
” constraints and nonnegative variables; the data are the values in
,
, and
.
” and “
” constraints, it is convenient to use submatrices