Michael H. Veatch - Linear and Convex Optimization

Здесь есть возможность читать онлайн «Michael H. Veatch - Linear and Convex Optimization» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: unrecognised, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Linear and Convex Optimization: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Linear and Convex Optimization»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Discover the practical impacts of current methods of optimization with this approachable, one-stop resource Linear and Convex Optimization: A Mathematical Approach Experienced researcher and undergraduate teacher Mike Veatch presents the main algorithms used in linear, integer, and convex optimization in a mathematical style with an emphasis on what makes a class of problems practically solvable and developing insight into algorithms geometrically. Principles of algorithm design and the speed of algorithms are discussed in detail, requiring no background in algorithms.
The book offers a breadth of recent applications to demonstrate the many areas in which optimization is successfully and frequently used, while the process of formulating optimization problems is addressed throughout. 
Linear and Convex Optimization Coverage of current methods in optimization in a style and level that remains appealing and accessible for mathematically trained undergraduates Enhanced insights into a few algorithms, instead of presenting many algorithms in cursory fashion An emphasis on the formulation of large, data-driven optimization problems Inclusion of linear, integer, and convex optimization, covering many practically solvable problems using algorithms that share many of the same concepts Presentation of a broad range of applications to fields like online marketing, disaster response, humanitarian development, public sector planning, health delivery, manufacturing, and supply chain management Ideal for upper level undergraduate mathematics majors with an interest in practical applications of mathematics, this book will also appeal to business, economics, computer science, and operations research majors with at least two years of mathematics training.

Linear and Convex Optimization — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Linear and Convex Optimization», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

In Section 1.2we introduced the concept of a linear program. This section introduces algebraic and matrix notation for linear programs. It then defines the three main classes of mathematical programs: linear programs, integer programs, and nonlinear programs. Each of these will be studied in later chapters, though for nonlinear programs we will focus on the more tractable subclass of convex programs. A mathematical program with variables Linear and Convex Optimization - изображение 91and objective function Linear and Convex Optimization - изображение 92can be stated abstractly in terms of a feasible region as However we will always describe the feasible region using constraint - фото 93as

However we will always describe the feasible region using constraint equations - фото 94

However, we will always describe the feasible region using constraint equations or inequalities. The notation for the constraints is introduced in the following text.

1.4.1 Linear Programs

We have already seen two examples of linear programs.

General Form of a Linear Program

There are decision variables and - фото 95

There are картинка 96decision variables, картинка 97and картинка 98functional constraints. The constraints can use a mixture of “ картинка 99”, “ картинка 100”, and “ картинка 101”. Each variable may have the bound картинка 102, картинка 103, or no bound, which we call unrestricted in sign (u.r.s.). The distinguishing characteristics of a linear program are (i) the objective function and all constraints are linear functions and (ii) the variables are continuous, i.e. fractional values are allowed. They are often useful as approximate models even when these assumptions do not fully hold.

We will use matrix notation for linear programs whenever possible. Let Linear and Convex Optimization - изображение 104, Linear and Convex Optimization - изображение 105, Linear and Convex Optimization - изображение 106, and

Here and - фото 107

Here картинка 108, картинка 109, and картинка 110are column vectors. If all the constraints are equalities, they can be written картинка 111. Similarly, “ картинка 112” constraints can be written Example 12Consider the linear program 14 Converting the objective - фото 113.

Example 1.2Consider the linear program

(1.4) Converting the objective function and constraints to matrix form we have If - фото 114

Converting the objective function and constraints to matrix form, we have

If we let then this linear program can be written - фото 115

If we let

then this linear program can be written It is important to distinguish between - фото 116

then this linear program can be written

It is important to distinguish between the structure of an optimization problem - фото 117

It is important to distinguish between the structure of an optimization problem and the data that provides a specific numerical example. The structure of ( 1.4) is a minimization linear program with “ картинка 118” constraints and nonnegative variables; the data are the values in картинка 119, картинка 120, and картинка 121.

To write a mixture of “ and constraints it is convenient to use submatrices and w - фото 122” and “ Linear and Convex Optimization - изображение 123” constraints, it is convenient to use submatrices

Linear and Convex Optimization - изображение 124

and write, e.g.

Linear and Convex Optimization - изображение 125

1.4.2 Integer Programs

Many practical optimization problems involve making discrete quantitative choices, such as how many fire trucks of each type a fire department should purchase, or logical choices, such as whether or not each drug being developed by a pharmaceutical company should be chosen for a clinical trial. Both types of situations can be modeled by integer variables.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Linear and Convex Optimization»

Представляем Вашему вниманию похожие книги на «Linear and Convex Optimization» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Linear and Convex Optimization»

Обсуждение, отзывы о книге «Linear and Convex Optimization» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x