Mikhail Moklyachuk - Convex Optimization

Здесь есть возможность читать онлайн «Mikhail Moklyachuk - Convex Optimization» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: unrecognised, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Convex Optimization: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Convex Optimization»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

This book provides easy access to the basic principles and methods for solving constrained and unconstrained convex optimization problems. Included are sections that cover: basic methods for solving constrained and unconstrained optimization problems with differentiable objective functions; convex sets and their properties; convex functions and their properties and generalizations; and basic principles of sub-differential calculus and convex programming problems.
provides detailed proofs for most of the results presented in the book and also includes many figures and exercises for a better understanding of the material. Exercises are given at the end of each chapter, with solutions and hints to selected exercises given at the end of the book. Undergraduate and graduate students, researchers in different disciplines, as well as practitioners will all benefit from this accessible approach to convex optimization methods.

Convex Optimization — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Convex Optimization», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Table of Contents

1 Cover

2 Title Page Series Editor Nikolaos Limnios

3 Copyright First published 2020 in Great Britain and the United States by ISTE Ltd and John Wiley & Sons, Inc. Apart from any fair dealing for the purposes of research or private study, or criticism or review, as permitted under the Copyright, Designs and Patents Act 1988, this publication may only be reproduced, stored or transmitted, in any form or by any means, with the prior permission in writing of the publishers, or in the case of reprographic reproduction in accordance with the terms and licenses issued by the CLA. Enquiries concerning reproduction outside these terms should be sent to the publishers at the undermentioned address: ISTE Ltd 27-37 St George’s Road London SW19 4EU UK www.iste.co.uk John Wiley & Sons, Inc. 111 River Street Hoboken, NJ 07030 USA www.wiley.com © ISTE Ltd 2020 The rights of Mikhail Moklyachuk to be identified as the author of this work have been asserted by him in accordance with the Copyright, Designs and Patents Act 1988. Library of Congress Control Number: 2020943973 British Library Cataloguing-in-Publication Data A CIP record for this book is available from the British Library ISBN 978-1-78630-683-8

4 Notations

5 Introduction

6 1 Optimization Problems with Differentiable Objective Functions1.1. Basic concepts 1.2. Optimization problems with objective functions of one variable 1.3. Optimization problems with objective functions of several variables 1.4. Constrained optimization problems 1.5. Exercises

7 2 Convex Sets2.1. Convex sets: basic definitions 2.2. Combinations of points and hulls of sets 2.3. Topological properties of convex sets 2.4. Theorems on separation planes and their applications 2.5. Systems of linear inequalities and equations 2.6. Extreme points of a convex set 2.7. Exercises

8 3 Convex Functions3.1. Convex functions: basic definitions 3.2. Operations in the class of convex functions 3.3. Criteria of convexity of differentiable functions 3.4. Continuity and differentiability of convex functions 3.5. Convex minimization problem 3.6. Theorem on boundedness of Lebesgue set of a strongly convex function 3.7. Conjugate function 3.8. Basic properties of conjugate functions 3.9. Exercises

9 4 Generalizations of Convex Functions4.1. Quasi-convex functions 4.2. Pseudo-convex functions 4.3. Logarithmically convex functions 4.4. Convexity in relation to order 4.5. Exercises

10 5 Sub-gradient and Sub-differential of Finite Convex Function 5.1. Concepts of sub-gradient and sub-differential 5.2. Properties of sub-differential of convex function 5.3. Sub-differential mapping 5.4. Calculus rules for sub-differentials 5.5. Systems of convex and linear inequalities 5.6. Exercises

11 6 Constrained Optimization Problems6.1. Differential conditions of optimality 6.2. Sub-differential conditions of optimality 6.3. Exercises 6.4. Constrained optimization problems 6.5. Exercises 6.6. Dual problems in convex optimization 6.7. Exercises

12 Solutions, Answers and Hints

13 References

14 Index

15 End User License Agreement

List of Illustrations

1 Chapter 1 Figure 1.1. Example 1.5 Figure 1.2. Example 1.6

2 Chapter 2 Figure 2.1. Convex set X 1 . Non-convex set X 2 Figure 2.2. X 1 is a cone . X 2 is a convex cone Figure 2.3. Conjugate cones Figure 2.4. Affine set and linear subspace Figure 2.5. a) Convex hull. b) Conic hull Figure 2.6. a) Convex polyhedron. b) Polyhedral cone Figure 2.7. Unbounded closed convex set Figure 2.8. Projection of a point onto a set Figure 2.9. Sets X1 and X2 are: a) properly separated; b) strongly separated; c)...Figure 2.10. a), c) Properly supporting hyperplanes; b) supporting hyperplane

3 Chapter 3Figure 3.1. Convex function Figure 3.2. Epigraph of convex function Figure 3.3. Epigraph of nonconvex function Figure 3.4. Separating linear function

4 Chapter 5Figure 5.1. Example 5.1

Guide

1 Cover

2 Table of Contents

3 Title Page Series Editor Nikolaos Limnios

4 Copyright First published 2020 in Great Britain and the United States by ISTE Ltd and John Wiley & Sons, Inc. Apart from any fair dealing for the purposes of research or private study, or criticism or review, as permitted under the Copyright, Designs and Patents Act 1988, this publication may only be reproduced, stored or transmitted, in any form or by any means, with the prior permission in writing of the publishers, or in the case of reprographic reproduction in accordance with the terms and licenses issued by the CLA. Enquiries concerning reproduction outside these terms should be sent to the publishers at the undermentioned address: ISTE Ltd 27-37 St George’s Road London SW19 4EU UK www.iste.co.uk John Wiley & Sons, Inc. 111 River Street Hoboken, NJ 07030 USA www.wiley.com © ISTE Ltd 2020 The rights of Mikhail Moklyachuk to be identified as the author of this work have been asserted by him in accordance with the Copyright, Designs and Patents Act 1988. Library of Congress Control Number: 2020943973 British Library Cataloguing-in-Publication Data A CIP record for this book is available from the British Library ISBN 978-1-78630-683-8

5 Notations

6 Introduction

7 Begin Reading

8 Solutions, Answers and Hints

9 References

10 Index

11 End User License Agreement

Pages

1 v

2 iii

3 iv

4 ix

5 x

6 xi

7 xii

8 1

9 2

10 3

11 4

12 5

13 6

14 7

15 8

16 9

17 10

18 11

19 12

20 13

21 14

22 15

23 16

24 17

25 18

26 19

27 20

28 21

29 22

30 23

31 24

32 25

33 26

34 27

35 28

36 29

37 30

38 31

39 32

40 33

41 34

42 35

43 36

44 37

45 38

46 39

47 40

48 41

49 42

50 43

51 44

52 45

53 46

54 47

55 48

56 49

57 50

58 51

59 52

60 53

61 54

62 55

63 56

64 57

65 58

66 59

67 60

68 61

69 62

70 63

71 64

72 65

73 66

74 67

75 68

76 69

77 70

78 71

79 72

80 73

81 74

82 75

83 76

84 77

85 78

86 79

87 80

88 81

89 82

90 83

91 84

92 85

93 86

94 87

95 88

96 89

97 90

98 91

99 92

100 93

101 94

102 95

103 96

104 97

105 98

106 99

107 100

108 101

109 102

110 103

111 104

112 105

113 106

114 107

115 108

116 109

117 111

118 112

119 113

120 114

121 115

122 116

123 117

124 118

125 119

126 120

127 121

128 122

129 123

130 124

131 125

132 126

133 127

134 128

135 129

136 130

137 131

138 132

139 133

140 134

141 135

142 136

143 137

144 138

145 139

146 140

147 141

148 142

149 143

150 144

151 145

152 146

153 147

154 148

155 149

156 150

157 151

158 152

159 153

160 154

161 155

162 156

163 157

164 158

165 159

166 160

167 161

168 162

169 163

170 164

171 165

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Convex Optimization»

Представляем Вашему вниманию похожие книги на «Convex Optimization» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Convex Optimization»

Обсуждение, отзывы о книге «Convex Optimization» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x