Michael H. Veatch - Linear and Convex Optimization

Здесь есть возможность читать онлайн «Michael H. Veatch - Linear and Convex Optimization» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: unrecognised, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Linear and Convex Optimization: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Linear and Convex Optimization»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Discover the practical impacts of current methods of optimization with this approachable, one-stop resource Linear and Convex Optimization: A Mathematical Approach Experienced researcher and undergraduate teacher Mike Veatch presents the main algorithms used in linear, integer, and convex optimization in a mathematical style with an emphasis on what makes a class of problems practically solvable and developing insight into algorithms geometrically. Principles of algorithm design and the speed of algorithms are discussed in detail, requiring no background in algorithms.
The book offers a breadth of recent applications to demonstrate the many areas in which optimization is successfully and frequently used, while the process of formulating optimization problems is addressed throughout. 
Linear and Convex Optimization Coverage of current methods in optimization in a style and level that remains appealing and accessible for mathematically trained undergraduates Enhanced insights into a few algorithms, instead of presenting many algorithms in cursory fashion An emphasis on the formulation of large, data-driven optimization problems Inclusion of linear, integer, and convex optimization, covering many practically solvable problems using algorithms that share many of the same concepts Presentation of a broad range of applications to fields like online marketing, disaster response, humanitarian development, public sector planning, health delivery, manufacturing, and supply chain management Ideal for upper level undergraduate mathematics majors with an interest in practical applications of mathematics, this book will also appeal to business, economics, computer science, and operations research majors with at least two years of mathematics training.

Linear and Convex Optimization — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Linear and Convex Optimization», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать
Table of Contents 1 Cover 2 Linear and Convex Optimization Linear and Convex - фото 1

Table of Contents

1 Cover

2 Linear and Convex Optimization Linear and Convex Optimization A Mathematical Approach Michael H. Veatch Gordon College

3 Copyright

4 Preface

5 About the Companion Website

6 1 Introduction to Optimization Modeling1.1 Who Uses Optimization? 1.2 Sending Aid to a Disaster 1.3 Optimization Terminology 1.4 Classes of Mathematical Programs

7 2 Linear Programming Models 2.1 Resource Allocation 2.2 Purchasing and Blending 2.3 Workforce Scheduling 2.4 Multiperiod Problems 2.5 Modeling Constraints 2.6 Network Flow

8 3 Linear Programming Formulations 3.1 Changing Form 3.2 Linearization of Piecewise Linear Functions 3.3 Dynamic Programming

9 4 Integer Programming Models 4.1 Quantitative Variables and Fixed Costs 4.2 Set Covering 4.3 Logical Constraints and Piecewise Linear Functions 4.4 Additional Applications 4.5 Traveling Salesperson and Cutting Stock Problems

10 5 Iterative Search Algorithms 5.1 Iterative Search and Constructive Algorithms 5.2 Improving Directions and Optimality 5.3 Computational Complexity and Correctness

11 6 Convexity 6.1 Convex Sets 6.2 Convex and Concave Functions

12 7 Geometry and Algebra of LPs 7.1 Extreme Points and Basic Feasible Solutions 7.2 Optimality of Extreme Points 7.3 Linear Programs in Canonical Form 7.4 Optimality Conditions 7.5 Optimality for General Polyhedra

13 8 Duality Theory 8.1 Dual of a Linear Program 8.2 Duality Theorems 8.3 Complementary Slackness 8.4 Lagrangian Duality 8.5 Farkas' Lemma and Optimality

14 9 Simplex Method 9.1 Simplex Method From a Known Feasible Solution 9.2 Degeneracy and Correctness 9.3 Finding an Initial Feasible Solution 9.4 Computational Strategies and Speed

15 10 Sensitivity Analysis 10.1 Graphical Sensitivity Analysis 10.2 Shadow Prices and Reduced Costs 10.3 Economic Interpretation of the Dual

16 11 Algorithmic Applications of Duality 11.1 Dual Simplex Method 11.2 Network Simplex Method 11.3 Primal‐Dual Interior Point Method

17 12 Integer Programming Theory 12.1 Linear Programming Relaxations 12.2 Strong Formulations 12.3 Unimodular Matrices

18 13 Integer Programming Algorithms 13.1 Branch and Bound Methods 13.2 Cutting Plane Methods

19 14 Convex Programming: Optimality Conditions 14.1 KKT Optimality Conditions 14.2 Lagrangian Duality

20 15 Convex Programming: Algorithms 15.1 Convex Optimization Models 15.2 Separable Programs 15.3 Unconstrained Optimization 15.4 Quadratic Programming 15.5 Primal‐dual Interior Point Method

21 A Linear Algebra and Calculus ReviewA.1 Sets and Other Notation A.2 Matrix and Vector Notation A.3 Matrix Operations A.4 Matrix Inverses A.5 Systems of Linear Equations A.6 Linear Independence and Rank A.7 Quadratic Forms and Eigenvalues A.8 Derivatives and Convexity

22 Bibliography

23 Index

24 End User License Agreement

List of Tables

1 Chapter 1 Table 1.1 Data for sending aid.

2 Chapter 2 Table 2.1 Data for Kan Jam production. Table 2.2 Data for auto parts production. Table 2.3 Data for Custom Tees ads. Table 2.4 Data for producing steel. Table 2.5 Solution for producing steel. Table 2.6 Requirements and costs for police shifts. Table 2.7 Demand and labor available for gift baskets Table 2.8 Transmission costs, supply, and demand. Table 2.9 Soybean shipping costs, supply, and demand.

3 Chapter 4Table 4.1 Languages and costs for translators.Table 4.2 Processing times for interventions against an intruder.Table 4.3 Mileage between cities.

4 Chapter 7Table 7.1 Basic solutions for Example 7.6.

5 Chapter 8Table 8.1 Dual relationships.Table 8.2 Possibilities when solving the primal and the dual.Table 8.3 When Systems 1 and 2 have solutions.

6 Chapter 9Table 9.1 Reduced costs and simplex directions for Example 9.5.

7 Chapter 10Table 10.1 General terminology for a linear program.Table 10.2 Sign of shadow prices.Table 10.3 Data for Kan Jam production.Table 10.4 Data for Custom Tees ads.

8 Chapter 11Table 11.1 Dual relationships for corresponding basic solutions.Table 11.2 Iterations of the path following algorithm.Table 11.3 Points on central path.

List of Illustrations

1 Chapter 1 Figure 1.1 Region satisfying constraints for sending aid. Figure 1.2 Optimal point and contour for sending aid. Figure 1.3 Problem has optimal solution for dashed objective but is unbounde... Figure 1.4 Feasible integer solutions for (1.5).

2 Chapter 2 Figure 2.1 Electricity transmission network. Figure 2.2 Transportation network for soybeans.Figure 2.3 Water pipe network for Exercise 2.25.

3 Chapter 3Figure 3.1 Profit contribution (the negative of cost) for labor.Figure 3.2 Street grid. Each block is labeled with its travel time and each ...Figure 3.3 Travel times for Exercise 3.12.Figure 3.4 Project costs for Exercise 3.13.

4 Chapter 4Figure 4.1 A piecewise linear function.

5 Chapter 5Figure 5.1 An improving direction for maximizing картинка 2.

6 Chapter 6Figure 6.1 Feasible region and isocontours for Example 6.1.Figure 6.2 The first set is convex. The second is not.Figure 6.3 The point картинка 3is a convex combination of картинка 4, картинка 5, картинка 6.Figure 6.4 Unbounded sets. Only the first two have unbounded directions.Figure 6.5 A polyhedral cone.Figure 6.6 The first function is convex. The second is concave.Figure 6.7 The line картинка 7only intersects картинка 8at the point shown.Figure 6.8 Epigraph of картинка 9.

7 Chapter 7Figure 7.1 Basic solutions for Example 7.1.Figure 7.2 The point картинка 10is a degenerate basic feasible solution.Figure 7.3 Feasible region for Example 7.3.Figure 7.4 Edge directions for the bfs картинка 11.Figure 7.5 Cones and their extreme rays картинка 12.

8 Chapter 8Figure 8.1 Gradient vectors and lines of constant картинка 13.Figure 8.2 Gradient vectors and active constraint normal vectors.

9 Chapter 9Figure 9.1 A polygon with картинка 14sides has diameter 4.

10 Chapter 10Figure 10.1 Feasible region for (10.1) with constraint картинка 15.Figure 10.2 Feasible region for 10.1 with картинка 16.Figure 10.3 Optimal value as a function of картинка 17.Figure 10.4 Feasible regions with right‐hand sides картинка 18.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Linear and Convex Optimization»

Представляем Вашему вниманию похожие книги на «Linear and Convex Optimization» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Linear and Convex Optimization»

Обсуждение, отзывы о книге «Linear and Convex Optimization» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x