Encyclopedia of Glass Science, Technology, History, and Culture

Здесь есть возможность читать онлайн «Encyclopedia of Glass Science, Technology, History, and Culture» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: unrecognised, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Encyclopedia of Glass Science, Technology, History, and Culture: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Encyclopedia of Glass Science, Technology, History, and Culture»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

A comprehensive and up-to-date encyclopedia to the fabrication, nature, properties, uses, and history of glass
 
The
has been designed to satisfy the needs and curiosity of a broad audience interested in the most varied aspects of material that is as old as the universe. As described in over 100 chapters and illustrated with 1100 figures, the practical importance of glass has increased over the ages since it was first man-made four millennia ago. The old-age glass vessels and window and stained glass now coexist with new high-tech products that include for example optical fibers, thin films, metallic, bioactive and hybrid organic-inorganic glasses, amorphous ices or all-solid-state batteries. 
In the form of scholarly introductions, the Encyclopedia chapters have been written by 151 noted experts working in 23 countries. They present at a consistent level and in a self-consistent manner these industrial, technological, scientific, historical and cultural aspects. Addressing the most recent fundamental advances in glass science and technology, as well as rapidly developing topics such as extra-terrestrial or biogenic glasses, this important guide:
Begins with industrial glassmaking Turns to glass structure and to physical, transport and chemical properties Deals with interactions with light, inorganic glass families and organically related glasses Considers a variety of environmental and energy issues And concludes with a long section on the history of glass as a material from Prehistory to modern glass science The
has been written not only for glass scientists and engineers in academia and industry, but also for material scientists as well as for art and industry historians. It represents a must-have, comprehensive guide to the myriad aspects this truly outstanding state of matter.

Encyclopedia of Glass Science, Technology, History, and Culture — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Encyclopedia of Glass Science, Technology, History, and Culture», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать
Figure 4 Entropy of the amorphous and crystalline phases of diopside CaMgSi 2O - фото 410

Figure 4 Entropy of the amorphous and crystalline phases of diopside, CaMgSi 2O 6.

Source: After [8].

The liquid transforms into a glass below T g, therefore the entropy of condensed phase (upper curve) does not follow the dashed line which is an extension of liquid entropy curve below T g.

Figure 5 Comparison between the heat capacities of amorphous o terphenol - фото 411

Figure 5 Comparison between the heat capacities of amorphous o ‐terphenol measured and calculated with configuron percolation theory.

Source: After [3].

(12) A last feature deserving to be mentioned is the universal dependence of the - фото 412

A last feature deserving to be mentioned is the “universal” dependence of the light scattering intensity on the time after a temperature jump in the glass transition range of oxide glasses, which is known as the Bokov effect [33]. The intensity displays a maximum whose height and location on the timescale depends on the previous history of the glass. The Bokov effect is associated with nonequilibrium fluctuations produced by coupling between hydrodynamic modes. Detailed investigations in the past decade have demonstrated that similarities observed in the glass transition region of oxides and polymers account for structural transformations related to the formation of spatially extensive structures, which in turn could be related to clustering effects similar to that envisaged by CPT and other similar models. The Bokov effect thus is providing additional arguments to characterize the glass transition as a second order like phase transformation rather than simply as a slowing down of dynamic processes.

7 Perspectives

Understanding vitrification mechanisms is of great importance either practically or theoretically. Although progress made in this respect has been very impressive, many of the questions remain unresolved. Among them, a central one is that of the glass transition itself, which has a pronounced relaxational, kinetic character in spite of its similarity with a second‐order phase transition in the Ehrenfest sense with volume and entropy continuity, but discontinuities of their derivatives that are used in practice to detect T g. Discussion about the nature of glass continues. After some lull it has gathered new momentum, especially in the second decade of the new century as the microscopic mechanisms generating the glassy state of matter are still debated. Future developments could be based on computer modeling that does also show the appearance of discontinuities in derivative thermodynamic parameters at the glass transition.

Acknowledgements

The author acknowledges help and advice from R. Doremus, V.L. Stolyarova, P. Poluektov, E. Manykin, W.E. Lee, P. James, R.J. Hand, K.P. Travis, G. Moebus, J.M. Parker, A. Varshneya, O.V. Mazurin, M. Liska, J. Marra, C.M. Jantzen, R. Tournier, C.A. Angell, and D.S. Sanditov.

References

1 1 Zarzycki, J. (1982). Glasses and the Vitreous State. Cambridge: Cambridge University Press.

2 2 McNaught, A.D. and Wilkinson, A. (eds.) (1997). The IUPAC Compendium on Chemical Terminology. Cambridge: Royal Society of Chemistry.

3 3 Ojovan, M.I. and Lee, W.E. (2006). Topologically disordered systems at the glass transition. J. Phys. Condens. Matter 18: 11507–11520.

4 4 Schairer, J.F. and Bowen, N.L. (1956). The system Na2O‐Al2O3‐SiO2. Am. J. Sci. 254: 129–195.

5 5 Tangeman, J.A., Phillips, B.L., Navrotsky, A. et al. (2001). Vitreous forsterite (Mg2SiO4): synthesis, structure, and thermochemistry. Geophys. Res. Lett. 28: 2517–2520.

6 6 Richet, P., Roskosz, M., and Roux, J. (2006). Glass formation in silicates: insights from composition. Chem. Geol. 225: 388–401.

7 7 Sakka, S., Sakaino, T., and Takahashi, K. (eds.) (1975). Glass Handbook. Tokyo: Asakura Publishing Co.

8 8 Mysen, B.O. and Richet, P. (2005). Silicate Glasses and Melts. Properties and Structure. Amsterdam: Elsevier.

9 9 Varshneya, A.K. (2006). Fundamentals of Inorganic Glasses. Sheffield: Society of Glass Technology.

10 10 Uhlmann, D.R. (1972). A kinetic treatment of glass formation. J. Non Cryst. Solids 7: 337–348.

11 11 Cohen, M.H. and Turnbull, D. (1961). Composition requirements for glass formation in metallic and ionic systems. Nature 189: 131–132.

12 12 Doremus, R.H. (2003). Melt viscosities of silicate glasses. Am. Ceram. Soc. Bull. 82: 59–63.

13 13 Volf, M.B. (1988). Mathematical Approach to Glass. Amsterdam: Elsevier.

14 14 Ojovan, M.I. (2012). Viscous flow and the viscosity of melts and glasses. Phys. Chem. Glasses 53: 143–150.

15 15 Zheng, Q. and Mauro, J.C. (2017). Viscosity of glass‐forming systems. J. Am. Ceram. Soc. 100: 6–25.

16 16 Angell, C.A. and Rao, K.J. (1972). Configurational excitations in condensed matter, and the “bond lattice” model for the liquid‐glass transition. J. Chem. Phys. 57: 470–481.

17 17 Ojovan, M.I., Travis, K.P., and Hand, R.J. (2007). Thermodynamic parameters of bonds in glassy materials from viscosity temperature relationships. J. Phys. Condens. Matter 19: 415107.

18 18 Zachariasen, W.H. (1932). The atomic arrangement in glass. J. Am. Chem. Soc. 54: 3841–3851.

19 19 Smekal, A. (1951). On the structure of glass. J. Soc. Glass Technol. 35: 411–420.

20 20 Stanworth, J. (1952). Tellurite glasses. J. Soc. Glass Technol. 36: 217–241.

21 21 Sun, K.‐H. (1947). Fundamental condition of glass formation. J. Am. Ceram. Soc. 30: 277–281.

22 22 Rawson, H. (1967). Inorganic Glass‐Forming Systems. London: Academic Press.

23 23 Boubata, N., Roula, A., and Moussaoui, I. (2013). Thermodynamic and relative approach to compute glass‐forming ability of oxides. Bull. Mater. Sci. 36: 457–460.

24 24 Dietzel, A. (1948). Glasstruktur und Glaseigeschaften. Glastech. Ber. 22: 41–50.

25 25 Vogel, W. (1994). Glass Chemistry, 2e. New York: Springer.

26 26 Phillips, J.C. (1979). Topology of covalent non‐crystalline solids I. J. Non Cryst. Solids 34: 153–181.

27 27 Ojovan, M.I. (2013). Ordering and structural changes at the glass‐liquid transition. J. Non Cryst. Solids 382: 79–86.

28 28 Stolyarova, V.L. (2008). Thermodynamic properties and structure of ternary silicate glass‐forming melts: experimental studies and modelling. J. Non Cryst. Solids 354: 1373–1377.

29 29 Mandelbrot, B.B. (1982). The Fractal Geometry of Nature. San Francisco: W. H. Freeman and Co., 460pp.

30 30 Mazurin, O.V. and Gankin, Y.V. (2008). Glass transition temperature: problems of measurement procedure. Glass Technol. 49: 229–233.

31 31 Sanditov, D.S. and Ojovan, M.I. (2017). On relaxation nature of glass transition in amorphous materials. Physica B 523: 96–113.

32 32 Kauzmann, W. (1948). The nature of the glassy state and the behaviour of liquids at low temperatures. Chem. Rev. 43: 219–256.

33 33 Bokov, N.A. (2008). Non‐equilibrium fluctuations as a plausible reason of the light scattering intensity peak in the glass transition region. J. Non Cryst. Solids 354: 1119–1122.

Note

1 Reviewers:R. Hand, Department of Materials Science and Engineering, University of Sheffield, Sheffield, UKV. Stolyarova, Saint Petersburg State University, Saint Petersburg, Russian Federation

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Encyclopedia of Glass Science, Technology, History, and Culture»

Представляем Вашему вниманию похожие книги на «Encyclopedia of Glass Science, Technology, History, and Culture» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Encyclopedia of Glass Science, Technology, History, and Culture»

Обсуждение, отзывы о книге «Encyclopedia of Glass Science, Technology, History, and Culture» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x