Das Anthropozän lernen und lehren

Здесь есть возможность читать онлайн «Das Anthropozän lernen und lehren» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: unrecognised, на немецком языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Das Anthropozän lernen und lehren: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Das Anthropozän lernen und lehren»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Die Wechselwirkung von Mensch und Natur hat durch die erkennbaren Folgen von Klimawandel und Artensterben eine Aktualität gewonnen, die für hoch-/schulische Bildung von zentraler Bedeutung ist.
Wie kann das Anthropozän in Schulen gelernt, an ihnen gelehrt werden? Als geologischer Fachbegriff für das aktuelle Erdzeitalter, in dem der Mensch durch seine massiven Eingriffe nachhaltige Spuren im Erdsystem hinterlässt? Als kulturelles Konzept, das zu einem Neudenken des Verhältnisses von Natur und Kultur herausfordert? Als Denkrahmen für Bildungsprozesse, die ein transformatives Potenzial entfalten können?
Wie kann die Mensch-Natur-Beziehung zukunftsorientiert neu gestaltet werden? Welche aktiven Lernprozesse können dafür notwendiges Wissen generieren? Wie können sie zu Zukunftsverantwortlichkeit und Gestaltungskompetenz befähigen?
Dieser Sammelband führt fachwissenschaftliche und fachdidaktische Perspektiven zusammen, die sich der Herausforderung interdisziplinären Denkens im Unterricht stellen.

Das Anthropozän lernen und lehren — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Das Anthropozän lernen und lehren», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Abbildung 3zeigt, dass die meisten KKA in NÖ erst ab dem Jahr 2000 gebaut wurden. SBR Anlagen waren durchgehend die meistverwendeten, Pflanzenkläranlagen die nach SBR Anlagen am zweit-meisten eingesetzte Technologie. Es ist auch klar ersichtlich, dass alle noch bestehenden Anlagen mit nur mechanischer Reinigung alte Anlagen sind. Die regionale Verteilung verschiedener KKA-Technologien in NÖ ist in Abbildung 4dargestellt.

4. Potenzial der Phosphorrückgewinnung bei kleinen Kläranlagen und Kleinkläranlagen

Die Phosphorrückgewinnung aus dem Klärschlamm ist derzeit in ein vieldiskutiertes Thema. Der aktuelle Bundesabfallwirtschaftsplan (BMNT, 2017) sieht vor, bis zum Jahr 2030 bis zu 85 % des in Österreich anfallenden kommunalen Klärschlammes einer Monoverbrennung zuzuführen, um damit eine (künftige) Rückgewinnung dieses im Abwasser/Klärschlamm enthaltenen wichtigen Nährstoffes zu ermöglichen. Diese Vorgaben betreffen in erster Linie natürlich größere Kläranlagen (der Bundesabfallwirtschaftsplan erwähnt in diesem Zusammenhang explizit Kläranlagen ab einer Ausbaugröße von 50.000 EW). Allerdings betrifft diese Thematik durchaus auch kleinere Kläranlagen, sowohl aus Sicht des Gewässerschutzes im Allgemeinen sowie der Phosphorrückgewinnung im Speziellen.

Da für die meisten kleinen Vorfluter in NÖ (und in Österreich) Phosphor der limitierende Faktor der Bioproduktion ist (Stickstoff ist durch diffusen Eintrag aus der Landwirtschaft meist im Überschuss vorhanden), wird Phosphorentfernung oft auch bei Kläranlagen mit weniger als 1.000 EW vorgeschrieben. Phosphor aus Kleinkläranlagen ist übers Jahr gesehen im Vergleich zum Eintrag von landwirtschaftlichen Flächen oft nur für einen eher geringen Teil des gesamten Phosphoreintrags verantwortlich. Jedoch emittieren Kläranlagen kontinuierlich sowie mit relativ konstanter Ablaufkonzentration und sind deshalb besonders bei Niedrigwasser eine zentrale Phosphoreintragungsquellen bei kleinen Gewässern. Eine Phosphorentfernung kann daher bei sensiblen Vorflutern, vor allem zu Zeiten von Niedrigabflüssen, auch bei kleineren Kläranlagen einen wesentlichen Teil zur Reduzierung der Nähstoffbelastung und damit zur Qualitätsverbesserung des Gewässers beitragen (Langitz et al., 2017).

Abbildung 5 Auszug aus der Karte ORISIKO1 Risikoanalyse der - фото 38

Abbildung 5: Auszug aus der Karte O-RISIKO1, Risikoanalyse der Oberflächenwasserkörper in Hinblick auf eine mögliche Zielverfehlung 2021 – Allgemeine physikalisch-chemische Parameter: Nährstoffe und organische Belastungen (BMLFUW, 2017)

Abbildung 6 Karte mit Kläranlagen 500 EW 60in NÖ welche in Einzugsgebieten - фото 39

Abbildung 6: Karte mit Kläranlagen < 500 EW 60in NÖ, welche in Einzugsgebieten mit Nährstoffproblematik liegen (nach Gerstorfer, 2018)

Abbildung 7 Kläranlagen 500 EW 60in NÖ bei denen immissionsbedingt eine - фото 40

Abbildung 7: Kläranlagen < 500 EW 60in NÖ, bei denen immissionsbedingt eine Phosphorentfernung nötig sein könnte (Anzahl der Anlagen pro Bezirk) (nach Gerstorfer, 2018)

Für größere Kläranlagen ist die chemische Fällung die Standardmethode für die weitergehende Entfernung von Phosphor (aus dem Klärschlamm). Jedoch zeigt die Erfahrung, dass bei Anlagen unter 100 EW die laufenden Kosten sehr hoch sind. Zusammen mit dem hohen Betriebs- und Wartungsaufwand führt das bei diesen kleinen Kläranlagen dazu, dass die Fällung nicht funktioniert. Aus diesen praktischen Überlegungen schreiben Behörden bei kleinen Kläranlagen nur selten Phosphorfällung vor, auch wenn diese aus Immissionssicht nötig wäre (Langitz et al., 2017).

Die Anwendung von nachgeschalteten Filtern mit Phosphor-adsorbierenden Materialien wurde als Alternative zur Phosphorfällung in den letzten 20 Jahren vielfach untersucht (z.B. Loderer, 2005; Vohla et al., 2011). Da Phosphor ein mineralischer, endlicher Rohstoff ist, sind Materialien, bei denen der gebundene Phosphor dann als Dünger in die Landwirtschaft gebracht werden kann, zu bevorzugen. Dabei stehen sich oft die im Filter erwünschte hohe Phosphoradsorptionskapazität und die Pflanzenverfügbarkeit als Dünger widersprüchlich gegenüber (Jenssen et al., 2010). Nachstehende Berechnungen beruhen auf der Annahme, dass Phosphorentfernung bei kleinen Anlagen mit nachgeschalteten Phosphorfiltern erfolgt und damit der Phosphor rückgewonnen werden kann.

Zur Bestimmung der Anzahl von kleinen Kläranlagen, bei denen in NÖ Phosphorentfernung vorgeschrieben werden müsste, wurden in Gerstorfer (2018) die Standorte der Kläranlagen kleiner 500 EW mit der Karte der Gewässerqualitätszustände im Hinblick auf Nährstoffproblematik (BMLFUW, 2017; Abbildung 5) verglichen. Abbildung 6zeigt jene Kläranlagen kleiner oder gleich 500 EW, welche in Einzugsgebieten mit Nährstoffproblematik liegen, Abbildung 7die Anzahl der KKA pro Bezirk, bei denen eine Phosphorentfernung nötig sein könnte.

Laut Gerstorfer (2018) liegen in NÖ 19 % der Kläranlagen mit einer Ausbaugröße kleiner oder gleich 500 EW in Einzugsgebieten, die eine Phosphorentfernung nötig machen könnte. Die mittlere Ausbaugröße dieser 940 Kläranlagen liegt bei 20 EW. Für einen Wasserverbrauch von 100 Liter pro Tag, einer Fracht von 1,8 g P pro Person und Tag sowie einer maximalen Ablaufkonzentration von 2 mg P/l ergibt sich, dass theoretisch 11 Tonnen Phosphor pro Jahr rückgewonnen werden könnten, wenn nur die 940 Kläranlagen kleiner 500 EW mit nachgeschalteten Phosphorfiltern ausgestattet werden, bei denen dies aus Gewässerschutzgründen nötig ist. Wenn bei allen Kläranlagen kleiner oder gleich 500 EW eine Phosphorrückgewinnung durchgeführt würde, dann könnten in NÖ alleine 57 Tonnen Phosphor pro Jahr rückgewonnen werden, in ganz Österreich mehr als 300 Tonnen Phosphor pro Jahr. Dies entspricht rund 2 % der in Österreich tatsächlich in der Landwirtschaft aufgebrachten jährlichen P-Fracht von Mineraldünger (BMLFUW, 2014).

5. Energie aus Abwasser

Im Grundlagenpapier zu energieautarken Kläranlagen in NÖ (Lindtner, 2011) wird auf die Möglichkeiten der Bereitstellung von erneuerbaren Energien auf Kläranlagen bereits verwiesen. Neben der klassischen Verwertung des Klärgases wird auch noch die Nutzung von Biomasse, Photovoltaik, Windenergie, Kleinwasserkraft und Solarthermie beispielhaft angeführt. In dieser Aufzählung fehlt noch die Wärmerückgewinnung aus dem Abwasser. Hier stehen große aber bisher weitgehend noch ungenutzte Mengen zur Verfügung, Neugebauer et al. (2015) schätzen das Potenzial auf österreichischen Kläranlagen auf über 3 TWh pro Jahr ein. In der im Dezember 2018 veröffentliche Neufassung der EU Richtlinie zur Förderung von erneuerbaren Energien (EU RL 2018/2001) wird Abwasser aufgrund dieses thermischen Energieinhaltes nun auch als erneuerbare Energiequelle anerkannt.

In NÖ wurde 2012 in der Gemeinde Amstetten eine erste thermische Abwassernutzung für die Wärmeversorgung von Gebäuden der Stadtwerke installiert (Umweltgemeinde, S. a.). Aktuell beschäftigt sich auch die Gemeinde Vösendorf mit Möglichkeiten zur Einbindung der Energie aus Abwasser in die lokale Energieversorgung (Grunert et al., 2019). Es ist zu wünschen, dass in naher Zukunft noch viele weitere Gemeinden diesen positiven Beispielen folgen, um eine lokale und klimafreundliche Energieversorgung in NÖ zu unterstützen.

6. Zusammenfassung

In NÖ ist der Anschlussgrad von Haushalten, Gewerbe und Industrie an eine kommunale abwassertechnische Infrastruktur mit etwa 94 % schon sehr hoch. Neben rund 190 „größeren“ Kläranlagen mit einer Ausbaugröße von mindesten 2.000 EW gibt es heute mehr als 4.900 Kläranlagen kleiner oder gleich 500 EW, wobei davon 4.500 Kleinkläranlagen kleiner oder gleich 50 EW sind. Die am meisten eingesetzte Technologie sind SBR Anlagen (ca. 2.700 Anlagen, davon ca. 2.500 KKA), Pflanzenkläranlagen (ca. 930 Anlagen, davon ca. 900 KKA) und Belebungsanlagen im Durchlaufprinzip (ca. 530 Anlagen, davon ca. 450 KKA). Alle ca. 4.900 Kläranlagen kleiner oder gleich 500 EW reinigen das Abwasser von ca. 100.000 EW, die 4.500 KKA das von 50.600 EW. Auf die aktuelle Debatte in Bezug auf die Phosphorrückgewinnung aus dem Klärschlamm (von größeren Kläranlagen) wird in diesem Beitrag nur verwiesen. Eine Phosphorentfernung bei Kleinkläranlagen kann bei sensiblen Vorflutern einen wesentlichen Teil zur Reduzierung der Nähstoffbelastung des Gewässers beitragen. Wenn nur jene Kläranlagen kleiner 500 EW mit nachgeschalteten Phosphorfiltern ausgestattet werden, bei denen dies aus Gewässerschutzgründen nötig ist, lassen sich bis zu 11 Tonnen Phosphor pro Jahr rückgewinnen. Wenn Phosphorrückgewinnung, und nicht Gewässerschutz, das primäre Ziel ist, ist das Potenzial viel höher; Wenn bei allen Kläranlagen kleiner 500 EW nachgeschaltete Phosphorfilter eingebaut würden, könnten in NÖ ca. 55 Tonnen Phosphor pro Jahr zurückgewonnen werden. Auch die Energiebereitstellung aus der erneuerbaren Energiequelle Abwasser ist ein sehr aktuelles Thema, dass in NÖ durchaus noch Entwicklungspotenzial hat.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Das Anthropozän lernen und lehren»

Представляем Вашему вниманию похожие книги на «Das Anthropozän lernen und lehren» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Das Anthropozän lernen und lehren»

Обсуждение, отзывы о книге «Das Anthropozän lernen und lehren» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x