Polymer Nanocomposite Materials

Здесь есть возможность читать онлайн «Polymer Nanocomposite Materials» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: unrecognised, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Polymer Nanocomposite Materials: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Polymer Nanocomposite Materials»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Discover an authoritative overview of zero-, one-, and two-dimensional polymer nanomaterials  Polymer Nanocomposite Materials: Applications in Integrated Electronic Devices  The two distinguished editors have selected resources that thoroughly explore the applications of polymer nanocomposites in energy, information, and biotechnology devices like sensors, solar cells, data storage devices, and artificial synapses. Academic researchers and professional developers alike will enjoy one of the first books on the subject of this environmentally friendly and versatile new technology. 
Polymer Nanocomposite Materials A thorough introduction to the fabrication of conductive polymer composites and their applications in sensors An exploration of biodegradable polymer nanocomposites for electronics and polymer nanocomposites for photodetectors Practical discussions of polymer nanocomposites for pressure sensors and the application of polymer nanocomposites in energy storage devices An examination of functional polymer nanocomposites for triboelectric nanogenerators and resistive switching memory Perfect for materials scientists and polymer chemists, Polymer Nanocomposite Materials: Applications in Integrated Electronic Devices will also earn a place in the libraries of sensor developers, electrical engineers, and other professionals working in the sensor industry seeking an authoritative one-stop reference for nanocomposite applications.

Polymer Nanocomposite Materials — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Polymer Nanocomposite Materials», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

26 26 Isitman, N.A., Dogan, M., Bayramli, E., and Kaynak, C. (2012). The role of nanoparticle geometry in flame retardancy of polylactide nanocomposites containing aluminium phosphinate. Polym. Degrad. Stab. 97: 1285–1296.

27 27 Shen, J., Hu, Y., Li, C. et al. (2009). Synthesis of amphiphilic graphene nanoplatelets. Small 5: 82–85.

28 28 Li, B. and Zhong, W.-H. (2011). Review on polymer/graphite nanoplatelet nanocomposites. J. Mater. Sci. 46: 5595–5614.

29 29 Umar, A. and Hahn, Y.B. (2006). ZnO nanosheet networks and hexagonal nanodiscs grown on silicon substrate: growth mechanism and structural and optical properties. Nanotechnology 17: 2174–2180.

30 30 Bai, W., Zhu, X., Zhu, Z., and Chu, J. (2008). Synthesis of zinc oxide nanosheet thin films and their improved field emission and photoluminescence properties by annealing processing. Appl. Surf. Sci. 254: 6483–6488.

31 31 Mani, G.K. and Rayappan, J.B.B. (2014). A simple and template free synthesis of branched ZnO nanoarchitectures for sensor applications. RSC Adv. 4: 64075–64084.

32 32 Li, B.L., Setyawati, M.I., Chen, L. et al. (2017). Directing assembly and disassembly of 2D MoS2 nanosheets with DNA for drug delivery. ACS Appl. Mater. Interfaces 9: 15286–15296.

33 33 Vengatesan, M.R. and Mittal, V. (2016). Nanoparticle- and Nanofiber-Based Polymer Nanocomposites: An Overview. Wiley-VCH.

34 34 Yang, J., Zhang, Z., Friedrich, K., and Schlarb, A.K. (2007). Creep resistant polymer nanocomposites reinforced with multiwalled carbon nanotubes. Macromol. Rapid Commun. 28: 955–961.

35 35 Fahmy, T.Y.A., Mobarak, F., Fahmy, Y. et al. (2005). Nanocomposites from natural cellulose fibers incorporated with sucrose. Wood Sci. Technol. 40: 77–86.

36 36 Garcia de Rodriguez, N.L., Thielemans, W., and Dufresne, A. (2006). Sisal cellulose whiskers reinforced polyvinyl acetate nanocomposites. Cellulose 13: 261–270.

37 37 Fahmy, T.Y.A. and Mobarak, F. (2008). Nanocomposites from natural cellulose fibers filled with kaolin in presence of sucrose. Carbohydr. Polym. 72: 751–755.

38 38 Lee, K.-Y., Bharadia, P., Blaker, J.J., and Bismarck, A. (2012). Short sisal fibre reinforced bacterial cellulose polylactide nanocomposites using hairy sisal fibres as reinforcement. Compos. Part A: Appl. Sci. Manuf. 43: 2065–2074.

39 39 Ibrahim, I.D., Jamiru, T., Sadiku, E.R. et al. (2016). Impact of surface modification and nanoparticle on sisal fiber reinforced polypropylene nanocomposites. J. Nanotechnol. 2016: 1–9.

40 40 Lonjon, A., Laffont, L., Demont, P. et al. (2010). Structural and electrical properties of gold nanowires/P(VDF-TrFE) nanocomposites. J. Phys. D 43: 345401.

41 41 Xu, Y. and Hoa, S.V. (2008). Mechanical properties of carbon fiber reinforced epoxy/clay nanocomposites. Compos. Sci. Technol. 68: 854–861.

42 42 Pozegic, T.R., Anguita, J.V., Hamerton, I. et al. (2016). Multi-functional carbon fibre composites using carbon nanotubes as an alternative to polymer sizing. Sci. Rep. 6: 37334.

43 43 Ulus, H., Şahin, Ö.S., and Avcı, A. (2016). Enhancement of flexural and shear properties of carbon fiber/epoxy hybrid nanocomposites by boron nitride nano particles and carbon nano tube modification. Fibers Polym. 16: 2627–2635.

44 44 Ye, G. (2017). Preparation of poly(7-formylindole)/carbon fibers nanocomposites and their high capacitance behaviors. Int. J. Electrochem. Sci. 12: 8467–8476.

45 45 Lu, X., Chao, D., Chen, J. et al. (2006). Preparation and characterization of inorganic/organic hybrid nanocomposites based on Au nanoparticles and polypyrrole. Mater. Lett. 60: 2851–2854.

46 46 Subedi, D.P., Madhup, D.K., Sharma, A. et al. (2012). Retracted: study of the wettability of ZnO nanofilms. Int. Nano Lett. 2: 1.

47 47 Ślosarczyk, A., Barełkowski, M., Niemier, S., and Jakubowska, P. (2015). Synthesis and characterisation of silica aerogel/carbon microfibers nanocomposites dried in supercritical and ambient pressure conditions. J. Sol–Gel Sci. Technol. 76: 227–232.

48 48 Dhandapani, S., Nayak, S.K., and Mohanty, S. (2016). Compatibility effect of titanium dioxide nanofiber on reinforced biobased nanocomposites: thermal, mechanical, and morphology characterization. J. Vinyl Add. Technol. 22: 529–538.

49 49 Ma, J.-L., Chan, T.-M., and Young, B. (2016). Experimental investigation of cold-formed high strength steel tubular beams. Eng. Struct. 126: 200–209.

50 50 Saranya, M., Ramachandran, R., and Wang, F. (2016). Graphene-zinc oxide (G-ZnO) nanocomposite for electrochemical supercapacitor applications. J. Sci. Adv. Mater. Devices 1: 454–460.

51 51 Shehata, N., Gaballah, S., Samir, E. et al. (2016). Fluorescent nanocomposite of embedded ceria nanoparticles in crosslinked PVA electrospun nanofibers. Nanomaterials 6: 102.

52 52 Shehata, N., Samir, E., Gaballah, S. et al. (2016). Embedded ceria nanoparticles in crosslinked PVA electrospun nanofibers as optical sensors for radicals. Sensors 16: 1371.

53 53 Sunny, A.T., Vijayan, P.P., Adhikari, R. et al. (2016). Copper oxide nanoparticles in an epoxy network: microstructure, chain confinement and mechanical behaviour. Phys. Chem. Chem. Phys. 18: 19655–19667.

54 54 Alswata, A.A., Ahmad, M.B., Al-Hada, N.M. et al. (2017). Preparation of zeolite/zinc oxide nanocomposites for toxic metals removal from water. Results Phys. 7: 723–731.

55 55 Fambri, L., Dabrowska, I., Ceccato, R., and Pegoretti, A. (2017). Effects of fumed silica and draw ratio on nanocomposite polypropylene fibers. Polymers 9: 41.

56 56 Wang, X. and Song, M. (2013). Toughening of polymers by graphene. Nanomater. Energy 2: 265–278.

57 57 Paszkiewicz, S., Pawelec, I., Szymczyk, A., and Rosłaniec, Z. (2015). Thermoplastic elastomers containing 2D nanofillers: montmorillonite, graphene nanoplatelets and oxidized graphene platelets. Polish J. Chem. Technol. 17: 74–81.

58 58 Wang, X., Xing, W., Feng, X. et al. (2017). MoS2/polymer nanocomposites: preparation, properties, and applications. Polym. Rev. 57: 440–466.

59 59 Ribeiro, H., Trigueiro, J.P.C., Silva, W.M. et al. (2019). Hybrid MoS2/h-BN nanofillers as synergic heat dissipation and reinforcement additives in epoxy nanocomposites. ACS Appl. Mater. Interfaces 11: 24485–24492.

60 60 Rao, K.S., Senthilnathan, J., Ting, J.M., and Yoshimura, M. (2014). Continuous production of nitrogen-functionalized graphene nanosheets for catalysis applications. Nanoscale 6: 12758–12768.

61 61 Shahjamali, M.M., Salvador, M., Bosman, M. et al. (2014). Edge-gold-coated silver nanoprisms: enhanced stability and applications in organic photovoltaics and chemical sensing. J. Phys. Chem. C 118: 12459–12468.

62 62 Wan, J., Kaplan, A.F., Zheng, J. et al. (2014). Two dimensional silicon nanowalls for lithium ion batteries. J. Mater. Chem. A 2: 6051–6057.

63 63 Bhattacharya, M. (2016). Polymer nanocomposites-a comparison between carbon nanotubes, graphene, and clay as nanofillers. Materials 9: 262.

64 64 Kumar, A.P., Depan, D., Singh Tomer, N., and Singh, R.P. (2009). Nanoscale particles for polymer degradation and stabilization-Trends and future perspectives. Prog. Polym. Sci. 34: 479–515.

65 65 Shifrina, Z.B., Matveeva, V.G., and Bronstein, L.M. (2020). Role of polymer structures in catalysis by transition metal and metal oxide nanoparticle composites. Chem. Rev. 120: 1350–1396.

66 66 Sotto, A., Boromand, A., Balta, S. et al. (2011). Doping of polyethersulfone nanofiltration membranes: antifouling effect observed at ultralow concentrations of TiO2 nanoparticles. J. Mater. Chem. 21: 10311–10320.

67 67 Huang, J., Zhang, K., Wang, K. et al. (2012). Fabrication of polyethersulfone-mesoporous silica nanocomposite ultrafiltration membranes with antifouling properties. J. Membr. Sci. 423–424: 362–370.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Polymer Nanocomposite Materials»

Представляем Вашему вниманию похожие книги на «Polymer Nanocomposite Materials» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Polymer Nanocomposite Materials»

Обсуждение, отзывы о книге «Polymer Nanocomposite Materials» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x