Polymer Nanocomposite Materials

Здесь есть возможность читать онлайн «Polymer Nanocomposite Materials» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: unrecognised, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Polymer Nanocomposite Materials: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Polymer Nanocomposite Materials»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Discover an authoritative overview of zero-, one-, and two-dimensional polymer nanomaterials  Polymer Nanocomposite Materials: Applications in Integrated Electronic Devices  The two distinguished editors have selected resources that thoroughly explore the applications of polymer nanocomposites in energy, information, and biotechnology devices like sensors, solar cells, data storage devices, and artificial synapses. Academic researchers and professional developers alike will enjoy one of the first books on the subject of this environmentally friendly and versatile new technology. 
Polymer Nanocomposite Materials A thorough introduction to the fabrication of conductive polymer composites and their applications in sensors An exploration of biodegradable polymer nanocomposites for electronics and polymer nanocomposites for photodetectors Practical discussions of polymer nanocomposites for pressure sensors and the application of polymer nanocomposites in energy storage devices An examination of functional polymer nanocomposites for triboelectric nanogenerators and resistive switching memory Perfect for materials scientists and polymer chemists, Polymer Nanocomposite Materials: Applications in Integrated Electronic Devices will also earn a place in the libraries of sensor developers, electrical engineers, and other professionals working in the sensor industry seeking an authoritative one-stop reference for nanocomposite applications.

Polymer Nanocomposite Materials — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Polymer Nanocomposite Materials», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

68 68 María Arsuaga, J., Sotto, A., del Rosario, G. et al. (2013). Influence of the type, size, and distribution of metal oxide particles on the properties of nanocomposite ultrafiltration membranes. J. Membr. Sci. 428: 131–141.

69 69 Zhao, S., Yan, W., Shi, M. et al. (2015). Improving permeability and antifouling performance of polyethersulfone ultrafiltration membrane by incorporation of ZnO-DMF dispersion containing nano-ZnO and polyvinylpyrrolidone. J. Membr. Sci. 478: 105–116.

70 70 Macyk, W., Szaciłowski, K., Stochel, G. et al. (2010). Titanium(IV) complexes as direct TiO2 photosensitizers. Coord. Chem. Rev. 254: 2687–2701.

71 71 Paz, Y. (2010). Application of TiO2 photocatalysis for air treatment: patents' overview. Appl. Catal., B 99: 448–460.

72 72 Su, W., Wang, S., Wang, X. et al. (2010). Plasma pre-treatment and TiO2 coating of PMMA for the improvement of antibacterial properties. Surf. Coat. Technol. 205: 465–469.

73 73 Olad, A. and Nosrati, R. (2013). Preparation and corrosion resistance of nanostructured PVC/ZnO–polyaniline hybrid coating. Prog. Org. Coat. 76: 113–118.

74 74 Wang, N., Fu, W., Zhang, J. et al. (2015). Corrosion performance of waterborne epoxy coatings containing polyethylenimine treated mesoporous-TiO2 nanoparticles on mild steel. Prog. Org. Coat. 89: 114–122.

75 75 Di Carlo, G., Curulli, A., Toro, R.G. et al. (2012). Green synthesis of gold-chitosan nanocomposites for caffeic acid sensing. Langmuir 28: 5471–5479.

76 76 Matos, A.C., Marques, C.F., Pinto, R.V. et al. (2015). Novel doped calcium phosphate-PMMA bone cement composites as levofloxacin delivery systems. Int. J. Pharm. 490: 200–208.

77 77 Ajayan, P.M., Stephan, O., Colliex, C., and Trauth, D. (1994). Aligned carbon nanotube arrays formed by cutting a polymer resin-nanotube composite. Science 265: 1212–1214.

78 78 Mao, C., Zhu, Y., and Jiang, W. (2012). Design of electrical conductive composites: tuning the morphology to improve the electrical properties of graphene filled immiscible polymer blends. ACS Appl. Mater. Interfaces 4: 5281–5286.

79 79 Jang, J., Bae, J., and Yoon, S.-H. (2003). A study on the effect of surface treatment of carbon nanotubes for liquid crystalline epoxide–carbon nanotube composites. J. Mater. Chem. 13: 676–681.

80 80 Stankovich, S., Dikin, D.A., Dommett, G.H. et al. (2006). Graphene-based composite materials. Nature 442: 282–286.

81 81 Yousefi, N., Gudarzi, M.M., Zheng, Q. et al. (2013). Highly aligned, ultralarge-size reduced graphene oxide/polyurethane nanocomposites: mechanical properties and moisture permeability. Compos. Part A: Appl. Sci. Manuf. 49: 42–50.

82 82 Yousefi, N., Sun, X., Lin, X. et al. (2014). Highly aligned graphene/polymer nanocomposites with excellent dielectric properties for high-performance electromagnetic interference shielding. Adv. Mater. 26: 5480–5487.

83 83 Shen, X., Wang, Z., Wu, Y. et al. (2016). Multilayer graphene enables higher efficiency in improving thermal conductivities of graphene/epoxy composites. Nano Lett. 16: 3585–3593.

84 84 Yousefi, N., Lin, X., Zheng, Q. et al. (2013). Simultaneous in situ reduction, self-alignment and covalent bonding in graphene oxide/epoxy composites. Carbon 59: 406–417.

85 85 Paton, K.R., Varrla, E., Backes, C. et al. (2014). Scalable production of large quantities of defect-free few-layer graphene by shear exfoliation in liquids. Nat. Mater. 13: 624–630.

86 86 Gojny, F.H., Wichmann, M.H.G., Köpke, U. et al. (2004). Carbon nanotube-reinforced epoxy-composites: enhanced stiffness and fracture toughness at low nanotube content. Compos. Sci. Technol. 64: 2363–2371.

87 87 Thostenson, E.T. and Chou, T.-W. (2006). Processing-structure-multi-functional property relationship in carbon nanotube/epoxy composites. Carbon 44: 3022–3029.

88 88 Viets, C., Kaysser, S., and Schulte, K. (2014). Damage mapping of GFRP via electrical resistance measurements using nanocomposite epoxy matrix systems. Composites Part B 65: 80–88.

89 89 Souri, H., Nam, I.W., and Lee, H.K. (2015). Electrical properties and piezoresistive evaluation of polyurethane-based composites with carbon nano-materials. Compos. Sci. Technol. 121: 41–48.

90 90 Ahmadi-Moghadam, B. and Taheri, F. (2014). Effect of processing parameters on the structure and multi-functional performance of epoxy/GNP-nanocomposites. J. Mater. Sci. 49: 6180–6190.

91 91 Chandrasekaran, S., Sato, N., Tölle, F. et al. (2014). Fracture toughness and failure mechanism of graphene based epoxy composites. Compos. Sci. Technol. 97: 90–99.

92 92 Li, Y., Zhang, H., Bilotti, E., and Peijs, T. (2016). Optimization of three-roll mill parameters for in-situ exfoliation of graphene. MRS Adv. 1: 1389–1394.

93 93 Dalir, H., Farahani, R.D., Nhim, V. et al. (2012). Preparation of highly exfoliated polyester-clay nanocomposites: process-property correlations. Langmuir 28: 791–803.

94 94 Park, J.-J. and Lee, J.-Y. (2013). Effect of nano-sized layered silicate on AC electrical treeing behavior of epoxy/layered silicate nanocomposite in needle-plate electrodes. Mater. Chem. Phys. 141: 776–780.

95 95 Kothmann, M.H., Ziadeh, M., Bakis, G. et al. (2015). Analyzing the influence of particle size and stiffness state of the nanofiller on the mechanical properties of epoxy/clay nanocomposites using a novel shear-stiff nano-mica. J. Mater. Sci. 50: 4845–4859.

96 96 Zhang, D.L. (2004). Processing of advanced materials using high-energy mechanical milling. Prog. Mater Sci. 49: 537–560.

97 97 Gupta, T.K., Singh, B.P., Mathur, R.B., and Dhakate, S.R. (2014). Multi-walled carbon nanotube-graphene-polyaniline multiphase nanocomposite with superior electromagnetic shielding effectiveness. Nanoscale 6: 842–851.

98 98 Wu, H., Zhao, W., Hu, H., and Chen, G. (2011). One-step in situ ball milling synthesis of polymer-functionalized graphene nanocomposites. J. Mater. Chem. 21: 8626–8632.

99 99 Jiang, X. and Drzal, L.T. (2012). Reduction in percolation threshold of injection molded high-density polyethylene/exfoliated graphene nanoplatelets composites by solid state ball milling and solid state shear pulverization. J. Appl. Polym. Sci. 124: 525–535.

100 100 Tang, L.-C., Wan, Y.-J., Yan, D. et al. (2013). The effect of graphene dispersion on the mechanical properties of graphene/epoxy composites. Carbon 60: 16–27.

101 101 Gu, J., Li, N., Tian, L. et al. (2015). High thermal conductivity graphite nanoplatelet/UHMWPE nanocomposites. RSC Adv. 5: 36334–36339.

102 102 Castrillo, P.D., Olmos, D., Amador, D.R., and Gonzalez-Benito, J. (2007). Real dispersion of isolated fumed silica nanoparticles in highly filled PMMA prepared by high energy ball milling. J. Colloid Interface Sci. 308: 318–324.

103 103 Donnay, M., Tzavalas, S., and Logakis, E. (2015). Boron nitride filled epoxy with improved thermal conductivity and dielectric breakdown strength. Compos. Sci. Technol. 110: 152–158.

104 104 Gu, J., Guo, Y., Yang, X. et al. (2017). Synergistic improvement of thermal conductivities of polyphenylene sulfide composites filled with boron nitride hybrid fillers. Compos. Part A: Appl. Sci. Manuf. 95: 267–273.

105 105 Lin, Y. and Connell, J.W. (2012). Advances in 2D boron nitride nanostructures: nanosheets, nanoribbons, nanomeshes, and hybrids with graphene. Nanoscale 4: 6908–6939.

106 106 Yao, Y., Lin, Z., Li, Z. et al. (2012). Large-scale production of two-dimensional nanosheets. J. Mater. Chem. 22: 13494–13499.

107 107 Lee, D., Lee, B., Park, K.H. et al. (2015). Scalable exfoliation process for highly soluble boron nitride nanoplatelets by hydroxide-assisted ball milling. Nano Lett. 15: 1238–1244.

108 108 Brent, J.R., Savjani, N., and O'Brien, P. (2017). Synthetic approaches to two-dimensional transition metal dichalcogenide nanosheets. Prog. Mater Sci. 89: 411–478.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Polymer Nanocomposite Materials»

Представляем Вашему вниманию похожие книги на «Polymer Nanocomposite Materials» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Polymer Nanocomposite Materials»

Обсуждение, отзывы о книге «Polymer Nanocomposite Materials» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x