Naoki Sugimoto - Chemistry and Biology of Non-canonical Nucleic Acids

Здесь есть возможность читать онлайн «Naoki Sugimoto - Chemistry and Biology of Non-canonical Nucleic Acids» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: unrecognised, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Chemistry and Biology of Non-canonical Nucleic Acids: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Chemistry and Biology of Non-canonical Nucleic Acids»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Discover the fundamentals and intricacies of a subject at the interface of chemistry and biology with this authoritative resource<br> <br> Chemistry and Biology of Non-canonical Nucleic Acids delivers a comprehensive treatment of the chemistry and biology of non-canonical nucleic acids, including their history, structures, stabilities, properties, and functions. You'll learn about the role of these vital compounds in transcription, translation, regulation, telomeres, helicases, cancers, neurodegenerative diseases, therapeutic applications, nanotechnology, and more.<br> <br> An ideal resource for graduate students, researchers in physical, organic, analytical, and inorganic chemistry will learn about uncommon nucleic acids, become the common non-canonical nucleic acids that fascinate and engage academics and professionals in private industry.<br> <br> Split into 15 chapters covering a wide range of aspects of non-canonical nucleic acids, the book explains why these compounds exist at the forefront of a new research revolution at the intersection of chemistry and biology. Chemistry and Biology of Non-canonical Nucleic Acids also covers a broad range of topics critical to understanding these versatile and omnipresent chemicals, including:<br> <br> * A discussion of the dynamic regulation of biosystems by nucleic acids with non-canonical structures<br> * The role played by nucleic acid structures in neurodegenerative diseases and various cancers<br> * An exploration of the future outlook for the chemistry and biology of non-canonical nucleic acids<br> * An introduction to the history of canonical and non-canonical structures of nucleic acids<br> * An analysis of the physicochemical properties of non-canonical nucleic acids<br> <br> Perfect for biochemists, materials scientists, and bioengineers, Chemistry and Biology of Non-canonical Nucleic Acids will also earn a place in the libraries of medicinal and pharmaceutical chemists who wish to improve their understanding of life processes and the role that non-canonical nucleic acids play in them.

Chemistry and Biology of Non-canonical Nucleic Acids — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Chemistry and Biology of Non-canonical Nucleic Acids», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Due to a strong repulsion of negative charges in the i-motif, the cations can bind i-motif groove. It is reported that the choline ions bind to around narrow groove in the i-motif and the binding induces large stabilization of the i-motif in the solution with neutral pH [13].

3.5 Thermodynamic Analysis for the Non-canonical Nucleic Acids

3.5.1 Thermodynamic Analysis for the Intramolecular Triplex and Tetraplex

Upon triplex unfolding the absorbance at 260 nm is known to increase as a result of decreased base stacking, and the absorbance at 295 nm decreases, indicating the presence of cytosine: protonated cytosine base pairs (Hoogsteen base pairs). Similarly, the G-quadruplex unfolding can be monitored by the absorbance at 295 nm (see Chapter 4). The thermodynamic parameters for the intramolecular triplex and tetraplex can be calculated using Eqs. ( 3.3, 3.7, 3.8) described above if the unfolding process is two-state [14].

3.5.2 Thermodynamic Analysis for the Intermolecular Triplex

The unfolding of the triplex-stranded DNAs is strongly dependent on the pH values of the solution medium and falls into three different groups [15]:

Under acidic conditions (less than pH 6.5)

The global triplex unfolding proceeds in a monophasic triplex-to-coil collapse

(3.16) and the equilibrium constant K T can be written as 317 where S W S C S - фото 64

and the equilibrium constant, K T, can be written as

(3.17) where S W S C S Hrepresents the WatsonCrickHoogsteen triplex Δ H Tand Δ S - фото 65

where S W S C S Hrepresents the Watson–Crick–Hoogsteen triplex; Δ H Tand Δ S Tare the van't Hoff enthalpy and entropy of triplex formation, respectively; α Tis the molar fraction of the coiled strands in the structured triplex form; and C Tis the total species concentration. At the maximum temperature of the derivative absorbance versus temperature curves (d A /d T vs. T ), RT should be equal to ∼0.63 [16]; therefore, the van't Hoff equation can be written as

(3.18) Under near physiological conditions pH 7075 The global triplex unfolding - фото 66

Under near physiological conditions (pH 7.0–7.5)

The global triplex unfolding proceeds in a biphasic triplex-to-duplex-to-single transition and can be deconvoluted into two coupled subtransitions, a Hoogsteen transition and a Watson–Crick transition,

and the corresponding equilibrium constants K Hand K WC can be given by - фото 67

and the corresponding equilibrium constants, K Hand K WC, can be given by, respectively

(3.19) 320 where S W S Crepresents the WatsonCrick duplex Δ H H Δ S H Δ H WC - фото 68

(3.20) where S W S Crepresents the WatsonCrick duplex Δ H H Δ S H Δ H WC and Δ S - фото 69

where S W S Crepresents the Watson–Crick duplex; Δ H H, Δ S H, Δ H WC, and Δ S WCare the van't Hoff enthalpies and entropies for the Hoogsteen transition, respectively; α His the molar fraction of the Hoogsteen strand in the structured triplex state for the Hoogsteen transition; and α WCis the molar fraction of the Watson–Crick duplex in the corresponding coiled state for the Watson–Crick transition. Although the two transitions may overlap each other in a certain range, this cross-effect can be nearly neglected at the melting temperatures, and the values of α WCand α Hat which the derivative absorbance vs. temperature curves reach their maxima should be ∼0.42 and ∼0.50, respectively [17]. Thus, the van't Hoff equations can be simplified by

(3.21) 322 Under alkaline conditions more than pH 80 The triplex strand is not - фото 70

(3.22) Under alkaline conditions more than pH 80 The triplex strand is not formed - фото 71

Under alkaline conditions (more than pH 8.0)

The triplex strand is not formed, and the complex unfolding merely includes a monophasic duplex-to-coil transition. That is,

and the equilibrium constant K D can be given by 323 where Δ H Dand Δ S - фото 72

and the equilibrium constant, K D, can be given by

(3.23) where Δ H Dand Δ S Dare the vant Hoff enthalpy and entropy of duplex formation - фото 73

where Δ H Dand Δ S Dare the van't Hoff enthalpy and entropy of duplex formation in the 1 : 1 : 1 mixture of the three strands, respectively, and α Dis the molar fraction of the coiled strands in the structured duplex form. For this case, the maximum temperature should take place at α D= 0.50 [18], and therefore, the van't Hoff equation can be written as

(3.24) 353 Thermodynamic Analysis for the Tetraplex The unfolding of the - фото 74

3.5.3 Thermodynamic Analysis for the Tetraplex

The unfolding of the tetraplex-stranded DNAs is generally not in equilibrium ( Figure 3.11a). In general, the folding process for the tetraplex is very slow relative to unfolding. Therefore, the unfolding and folding processes often show different sigmoidal curves ( Figure 3.11b) [19]. Due to the hysteresis of unfolding and folding processes, the thermodynamic parameters for intermolecular tetraplex using UV melting curves are not estimated. However, the equilibrium between unfolding and folding tetraplex is adopted, and the thermodynamic parameters for tetraplex formation can be estimated by the following methods.

Figure 311 a The unfolding process for the intermolecular tetraplex b - фото 75

Figure 3.11 (a) The unfolding process for the intermolecular tetraplex. (b) Unfolding and folding behaviors for intermolecular tetraplex monitored by UV absorption.

For a folding reaction involving intermolecular and intramolecular tetraplexes ( Figure 3.12) from same sequences, the general equilibrium can be written as [20]

The general expression for the equilibrium constant K in terms of α and n is - фото 76

The general expression for the equilibrium constant, K , in terms of α and n is

(3.25) Note that this expression for the equilibrium constant for an association - фото 77

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Chemistry and Biology of Non-canonical Nucleic Acids»

Представляем Вашему вниманию похожие книги на «Chemistry and Biology of Non-canonical Nucleic Acids» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Chemistry and Biology of Non-canonical Nucleic Acids»

Обсуждение, отзывы о книге «Chemistry and Biology of Non-canonical Nucleic Acids» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x