Abdenacer Makhlouf - Algebra and Applications 1

Здесь есть возможность читать онлайн «Abdenacer Makhlouf - Algebra and Applications 1» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: unrecognised, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Algebra and Applications 1: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Algebra and Applications 1»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

This book is part of Algebra and Geometry, a subject within the SCIENCES collection published by ISTE and Wiley, and the first of three volumes specifically focusing on algebra and its applications. Algebra and Applications 1 centers on non-associative algebras and includes an introduction to derived categories. The chapters are written by recognized experts in the field, providing insight into new trends, as well as a comprehensive introduction to the theory. <p>The book incorporates self-contained surveys with the main results, applications and perspectives. The chapters in this volume cover a wide variety of algebraic structures and their related topics. Jordan superalgebras, Lie algebras, composition algebras, graded division algebras, non-associative C*– algebras, H*-algebras, Krichever-Novikov type algebras, preLie algebras and related structures, geometric structures on 3-Lie algebras and derived categories are all explored. Algebra and Applications 1 is of great interest to graduate students and researchers. <p>Each chapter combines some of the features of both a graduate level textbook and of research level surveys.

Algebra and Applications 1 — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Algebra and Applications 1», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Its twisted forms (i.e. those composition algebras ( картинка 450, ∗, n) that become isomorphic to the split Okubo algebra after extending scalars to an algebraic closure) are called Okubo algebras.

In the basis in Figure 2.1, the multiplication table of the split Okubo algebra is given in Figure 2.2.

Over fields of characteristic ≠ 3, our new definition of Okubo algebras coincide with the definition in examples 2.1, due to corollary 2.4. Okubo and Osborn (1981b) had given an ad hoc definition of the Okubo algebra over an algebraically closed field of characteristic 3.

Note that the split Okubo algebra does not contain any non-zero element that commutes with every other element, that is, its commutative center is trivial. This is not so for the para-Hurwitz algebra, where the para-unit lies in the commutative center.

Let картинка 451be a field of characteristic 3 and let 0 ≠ α , Algebra and Applications 1 - изображение 452. Consider the elements

Algebra and Applications 1 - изображение 453

in Algebra and Applications 1 - изображение 454( картинка 455being an algebraic closure of картинка 456). These elements generate, by multiplication and linear combinations over картинка 457, a twisted form of the split Okubo algebra ( n Denote by this twisted form Figure 22 - фото 458, ∗, n). Denote by this twisted form Figure 22 Multiplication table of the split Okubo - фото 459this twisted form.

Figure 22 Multiplication table of the split Okubo algebra The classification - фото 460

Figure 2.2. Multiplication table of the split Okubo algebra

The classification of the symmetric composition algebras in characteristic 3, which completes the classification of symmetric composition algebras over fields, is as follows (Elduque (1997), see also Chernousov et al . (2013)):

THEOREM 2.6.– Any symmetric composition algebra ( картинка 461, ∗, n) over a field картинка 462of characteristic 3 is either:

– a para-Hurwitz algebra. Two such algebras are isomorphic if and only if the associated Hurwitz algebras are too;

– a two-dimensional algebra with a basis {u, v} and multiplication given by

for a nonzero scalar These algebras do not contain idempotents and are - фото 463

for a non-zero scalar These algebras do not contain idempotents and are twisted forms of the - фото 464. These algebras do not contain idempotents and are twisted forms of the para-Hurwitz algebras.

Algebras corresponding to the scalars λ and λʹ are isomorphic if and only if Isomorphic to for some 0 α Moreover is isomorphic or antiisomorphic - фото 465.

– Isomorphic to for some 0 ≠ α, . Moreover, is isomorphic or anti-isomorphic to if and only if .

A more precise statement for the isomorphism condition in the last item is given in (Elduque 1997). A key point in the proof of this theorem is the study of idempotents on Okubo algebras. If there are non-zero idempotents, then these algebras are Petersson algebras. The most difficult case appears in the absence of idempotents. This is only possible if the ground field картинка 466is not perfect.

2.5. Triality

The importance of symmetric composition algebras lies in their connections with the phenomenon of triality in dimension 8, related to the fact that the Dynkin diagram D 4is the most symmetric one. The details of much of what follows can be found in (Knus et al . (1998), Chapter VIII).

Let ( картинка 467, ∗, n) be an eight-dimensional symmetric composition algebra over a field картинка 468, that is, картинка 469is either a para-Hurwitz algebra or an Okubo algebra. Write Lx ( y ) = xy = Ry ( x ) as usual. Then, due to theorem 2.3, Lx Rx = RxLx = n( x )id for any Algebra and Applications 1 - изображение 470so that, inside Algebra and Applications 1 - изображение 471, we have

Algebra and Applications 1 - изображение 472

Therefore, the map

Algebra and Applications 1 - изображение 473

extends to an isomorphism of associative algebras with involution:

where n is the Clifford algebra on the quadratic space - фото 474

where картинка 475( картинка 476, n) is the Clifford algebra on the quadratic space ( картинка 477, n), τ is its canonical involution ( τ ( x ) = x for any Algebra and Applications 1 - изображение 478) and σn ⊥nis the orthogonal involution on Algebra and Applications 1 - изображение 479induced by the quadratic form where the two copies of S are orthogonal and the restriction on each copy coincides with the norm. The multiplication in the Clifford algebra will be denoted by juxtaposition.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Algebra and Applications 1»

Представляем Вашему вниманию похожие книги на «Algebra and Applications 1» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Algebra and Applications 1»

Обсуждение, отзывы о книге «Algebra and Applications 1» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x