Abdenacer Makhlouf - Algebra and Applications 1

Здесь есть возможность читать онлайн «Abdenacer Makhlouf - Algebra and Applications 1» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: unrecognised, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Algebra and Applications 1: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Algebra and Applications 1»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

This book is part of Algebra and Geometry, a subject within the SCIENCES collection published by ISTE and Wiley, and the first of three volumes specifically focusing on algebra and its applications. Algebra and Applications 1 centers on non-associative algebras and includes an introduction to derived categories. The chapters are written by recognized experts in the field, providing insight into new trends, as well as a comprehensive introduction to the theory. <p>The book incorporates self-contained surveys with the main results, applications and perspectives. The chapters in this volume cover a wide variety of algebraic structures and their related topics. Jordan superalgebras, Lie algebras, composition algebras, graded division algebras, non-associative C*– algebras, H*-algebras, Krichever-Novikov type algebras, preLie algebras and related structures, geometric structures on 3-Lie algebras and derived categories are all explored. Algebra and Applications 1 is of great interest to graduate students and researchers. <p>Each chapter combines some of the features of both a graduate level textbook and of research level surveys.

Algebra and Applications 1 — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Algebra and Applications 1», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Two such symmetric composition algebras are isomorphic if and only if the corresponding alternative algebras, as algebras with involution, are too.

Sketch of proof : we can go in the reverse direction of Okubo’s construction. Given a symmetric composition algebra ( Algebra and Applications 1 - изображение 419, ∗, n) over a field containing ω , define the algebra Algebra and Applications 1 - изображение 420with multiplication determined by formula [2.8]. Then картинка 421turns out to be a separable alternative algebra of degree 3.

In case then we must consider with the same formula for the product In we have - фото 422, then we must consider with the same formula for the product In we have the Galois automorphism - фото 423, with the same formula for the product. In картинка 424, we have the Galois automorphism ωτ = ω 2. Then the conditions J (1) = 1 and J ( s ) = − s for any картинка 425induce a картинка 426-involution of the second kind in картинка 427. □

COROLLARY 2.4.– The algebras in examples 2.1essentially exhaust, up to isomorphism, the symmetric composition algebras over a field картинка 428of characteristic not 3.

Sketch of proof : let ω be a primitive cubic root of 1 in an algebraic closure of картинка 429, and let картинка 430, so that картинка 431if картинка 432. A separable alternative algebra over картинка 433is, up to isomorphism, one of the following:

– a central simple associative algebra, and hence we obtain the Okubo algebras in examples 2.1;

– for a Hurwitz algebra , in which case (, ∗, n) is shown to be isomorphic to the para-Hurwitz algebra attached to if , and (K (K (, J)0, ∗, n) to the para-Hurwitz algebra attached to if ;

– , for a cubic field extension of (if ), in which case the symmetric composition algebra is shown to be a twisted form of a two-dimensional para-Hurwitz algebra. □

One of the clues to understand symmetric composition algebras over fields of characteristic 3 is the following result of Petersson (1969) (dealing with char картинка 434).

THEOREM 2.5.– Let be an algebraically closed field of characteristic 2 3 Then any simple - фото 435be an algebraically closed field of characteristic ≠ 2, 3. Then any simple finite-dimensional algebra satisfying

[2.9] for any x y z is up to isomorphism one of the following the algebra - фото 436

for any x , y , z is, up to isomorphism, one of the following:

– the algebra (, ∙), where (, ∙, n) is a Hurwitz algebra and (that is, a para-Hurwitz algebra);

– the algebra (, ∗), where is the split Cayley algebra, and , where φ is a precise order 3 automorphism of given, in the basis in Figure 2.1by

where ω is a primitive cubic root of 1 Note that any symmetric composition - фото 437

where ω is a primitive cubic root of 1.

Note that any symmetric composition algebra ( картинка 438, ∗, n) satisfies [2.9]so the unique, up to isomorphism, Okubo algebra over an algebraically closed field of characteristic ≠ 2, 3 must be isomorphic to the last algebra in the theorem above, and this seems to be the first appearance of these algebras in the literature.

This results in the next definition:

DEFINITION 2.3 (Knus et al . (1998, §34.b)).– Let ( картинка 439, ∙, n) be a Hurwitz algebra , and let φ ∈ Aut( картинка 440, ∙, n) be an automorphism with φ 3= id. The composition algebra ( Algebra and Applications 1 - изображение 441, ∗, n), with

Algebra and Applications 1 - изображение 442

is called a Petersson algebra, and denoted by картинка 443.

In case φ = id, the Petersson algebra is the para-Hurwitz algebra associated with ( n Modifying the automorphism in theorem 25 consider the order 3 - фото 444, ∙, n).

Modifying the automorphism in theorem 2.5, consider the order 3 automorphism φ of the split Cayley algebra given by:

With this automorphism we may define Okubo algebras over arbitrary fields see - фото 445

With this automorphism, we may define Okubo algebras over arbitrary fields (see Elduque and Pérez (1996)).

DEFINITION 2.4.– Let ( картинка 446, ∙, n) be the split Cayley algebra over an arbi tr ary field картинка 447. The Petersson algebra картинка 448 is called the split Okubo algebra over картинка 449.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Algebra and Applications 1»

Представляем Вашему вниманию похожие книги на «Algebra and Applications 1» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Algebra and Applications 1»

Обсуждение, отзывы о книге «Algebra and Applications 1» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x