Self-Healing Smart Materials

Здесь есть возможность читать онлайн «Self-Healing Smart Materials» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: unrecognised, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Self-Healing Smart Materials: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Self-Healing Smart Materials»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

This comprehensive book describes the design, synthesis, mechanisms, characterization, fundamental properties, functions and development of self-healing smart materials and their composites with their allied applications. It covers cementitious concrete composites, bleeding composites, elastomers, tires, membranes, and composites in energy storage, coatings, shape-memory, aerospace and robotic applications. The 21 chapters are written by researchers from a variety of disciplines and backgrounds.

Self-Healing Smart Materials — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Self-Healing Smart Materials», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Based on these characteristics, several self-healing TPU elastomers have been designed by introducing dynamic covalent bonds and non-covalent interactions into the chains. Mainly, the most used mechanisms for self-healing TPU are based on dynamic disulfide bonds [68–70] and hydrogen bonding [71, 72].

Rekondo et al. [73] stated that the dynamic chemistry of disulfide bonds plays a vital role in self-healing processes. Metathesis of aromatic disulfides at room temperature is possible through the use of a tertiary amine as the catalyst. In this case bis(4-aminophenyl) disulfide was used, which is a diamine molecule characterized by an aromatic disulfide (Figure 3.26) as a dynamic crosslinking agent in poly(urea–urethane) systems. Author analyzed the use of equimolar amounts of (bis(4-aminophenyl) disulfide (1a) and bis(4-methoxyphenyl) disulfide (2) in deuterated DMSO (Figure 3.26). It was tested with 0.1 equivalents of tertiary amine (NEt 3), and the equilibrium was achieved in few minutes. If the reaction is tested without NEt 3, metathesis initiated in few minutes and the equilibrium is achieved in 22 h (Figure 3.26). With the aim to test that the reaction is catalyzed by primary aromatic amines present in 1a, the tests were carried out taking into account 1b and 2, without NEt 3. The system reaches equilibrium in 24 h if the same amount of moles of 1b and 2 are used, confirming that a catalyst is not necessary for the exchange reaction to occur.

Figure 326Reversible metathesis reaction of aromatic disulfides 1ab and 2 - фото 64

Figure 3.26Reversible metathesis reaction of aromatic disulfides 1a–b and 2 (Adapted with permission from Rekondo et al . [68]).

Nevejans et al. [74] proposed the self-healing concept in coatings based on waterborne poly(urethane-urea) containing aromatic disulfide dynamic bonds. Authors expressed that self-healing coating material should present two opposite properties: i) high strength and ii) molecular mobility. The influence of the flexibility of the two aromatic disulfides and its concentration on self-healing efficiency was explored. The two aromatic disulfides are shown in Figure 3.27 being S 2(Ph(CH 2) 3OH) 2designated as S3 and the more flexible alternative S 2(Ph(CH 2) 6OH) 2is named S6.

The mobility of the different compounds was characterized through the relaxation time (in dynamic experiments) and the self-healing ability through the time needed for the scratch closure. It was concluded that, replacing S3 by S6 in the formulation, the mobility increase. By the other hand, it is possible to include a trifunctional amine as chain extender (instead of a difunctional one, which decreased the mobility) and even keep the self-healing ability.

Another strategy was presented by Zhang et al. [75], proposing the use of C-ON bonds in alkoxyamine to promote the self-healing action in PU composites. Based on this idea, 5-hydroxy-2-(4-hydroxy-2,2,6,6-tetramethylpiperidin-1-yloxy)-2-methyl pentanenitrile (CTPO) was proposed as a dynamic reversible molecule that contain a nitrile group bonded to C–ON moieties. Due to nitrile has the ability to absorb electrons and stabilize carbon radicals, C-ON bonds in CTPO can be activated at a lower temperature.

Figure 327Chemical structure of bis43hydroxypropyloxyphenyldisulfide - фото 65

Figure 3.27Chemical structure of bis[4-(3-hydroxypropyloxy)phenyl]disulfide (S3) and bis[4-(6-hydroxyhexoxy)phenyl]disulfide (S6) (Reprinted with permission from Nevejans et al. [69]).

Polyurethane was obtained through the copolymerization of CTPO with 3-isocyanatomethyl-3,5,5-trimethylcyclohexylisocyanate (IPDI) and polyethylene glycol (PEG), where PEG represent the soft block, while IPDI and CTPO are the hard segments. Figure 3.28 presents a scheme of the healing mechanism. The self-healing efficiency was measured through notched impact test. The same sample was damaged and healed up to three times, obtaining an average healing efficiency of 94.6, 91.7 and 89.8% for the first, second and third time, respectively.

Hu et al. [76] grafted a hard segment of TPU with 2-ureido-4[1H]-pyrimidione (UPy), embedding the disulfide bonds in the principal chain. UPy groups exhibits a dimerization trend that includes four hydrogen bonds in a donor–donor–acceptor–acceptor array, with rapid kinetic and high dimerization energy.

The robust interaction between quadruple H-bonding of the UPy side groups acts as supramolecular crosslinking points allowing the improvement of mechanical properties in the TPU elastomer. The self-healing abilities was characterized by a dumbbell-shaped sample, who was fully cut in half and cured at 100 °C for 2 h. After the applied healing procedure, it was not possible to find the original crack, suggesting that the structural integrity was recovered.

Figure 328Schematic diagram of the healing reaction in PU Adapted with - фото 66

Figure 3.28Schematic diagram of the healing reaction in PU (Adapted with permission from Zhang et al . [70]).

References

1. Imbernon, L. and Norvez, S., From landfilling to vitrimer chemistry in rubber life cycle. Eur. Polym. J. , 82, 347, 2016.

2. Backman, L., Self-healing elastomers Comparison of methods , pp. 9–42, Arcada University of Applied Sciences. Helsinki Finland, 2018..

3. Hu, J., Mo, R., Jiang, X., Sheng, X., Zhang, X., Towards mechanical robust yet self-healing polyurethane elastomers via combination of dynamic main chain and dangling quadruple hydrogen bonds. Polymer , 183, 1–2, 2019.

4. Hernández, M., Grande, A.M., Dierkes, W., Bijleveld, J., Zwaag, S., García, S.J., Turning Vulcanized Natural Rubber into a Self-Healing Polymer: Effect of the Disulfide/Polysulfide Ratio. ACS Sustainable Chem. Eng. , 4, 5776, 2016.

5. White, S.R., Sottos, N.R., Geubelle, P.H., Moore, J.S., Kessler, M.R., Sriram, S.R., Brown, E.N., Viswanathan, S., Autonomic healing of polymer composites. Nature , 409, 794, 2001.

6. Jin, H.H., Mangun, C.L., Griffin, A.S., Moore, J.S., Sottos, N.R., White, S.R., Thermally stable autonomic healing in epoxy using a dual-microcapsule system. Adv. Mater. , 24, 282, 2014.

7. Toohey, K.S., Sottos, N.R., Lewis, J.A., Moore, J.S., White, S.R., Self-healing materials with microvascular networks. Nat. Mater. , 6, 581, 2007.

8. Fang, Y., Li, J., Du, X., Dua, Z., Cheng, X., Wang, H., Thermal- and mechanicalresponsive polyurethane elastomers with selfhealing, mechanical-reinforced, and thermal-stable capabilities. Polymer , 158, 166, 2018.

9. Khimi, S.R., Syamsinara, S.N., Najwa, T.N.L., Effect of Carbon Black on Self-healing Efficiency of Natural. Rubber. Mat. Today: Proceedings , 17 1064, 2019.

10. Denga, Y., Liang, X., Pei, X., Zhai, K., Wang, C., Zhang, B., Bai, B., Zhang, Y., Wang, P., Tan, Y., Xu, K. Self-healing ability and application of impact hardening polymers. Polymer Testing , 76, 43, 2019.

11. Grande, A.M., Garcia, S.J., Van der Zwaag, S., On the interfacial healing of a supramolecular elastomer. Polymer . 56, 435, 2015.

12. Shchukin D.G., Container-based multifunctional self-healing polymer coatings. Polym. Chem. 4, 4871, 2013.

13. Li, G.L., Zheng, Z.L., Mohwald, H., Shchukin, D.G., Silica/polymer doublewalled hybrid nanotubes: Synthesis and application as stimuli-responsive nanocontainers in self-healing coatings. ACS Nano , 7, 2470, 2013.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Self-Healing Smart Materials»

Представляем Вашему вниманию похожие книги на «Self-Healing Smart Materials» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Self-Healing Smart Materials»

Обсуждение, отзывы о книге «Self-Healing Smart Materials» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x