Barna Szabó - Finite Element Analysis

Здесь есть возможность читать онлайн «Barna Szabó - Finite Element Analysis» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: unrecognised, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Finite Element Analysis: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Finite Element Analysis»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Finite Element Analysis <p><b>An updated and comprehensive review of the theoretical foundation of the finite element method</b> <p>The revised and updated second edition of <i>Finite Element Analysis: Method, Verification, and Validation</i> offers a comprehensive review of the theoretical foundations of the finite element method and highlights the fundamentals of solution verification, validation, and uncertainty quantification. Written by noted experts on the topic, the book covers the theoretical fundamentals as well as the algorithmic structure of the finite element method. The text contains numerous examples and helpful exercises that clearly illustrate the techniques and procedures needed for accurate estimation of the quantities of interest. In addition, the authors describe the technical requirements for the formulation and application of design rules. <p>Designed as an accessible resource, the book has a companion website that contains a solutions manual, PowerPoint slides for instructors, and a link to finite element software. This important text: <ul><li>Offers a comprehensive review of the theoretical foundations of the finite element method</li> <li>Puts the focus on the fundamentals of solution verification, validation, and uncertainty quantification</li> <li>Presents the techniques and procedures of quality assurance in numerical solutions of mathematical problems</li> <li>Contains numerous examples and exercises</li></ul> <p>Written for students in mechanical and civil engineering, analysts seeking professional certification, and applied mathematicians, <i>Finite Element Analysis: Method, Verification, and Validation, Second Edition</i> includes the tools, concepts, techniques, and procedures that help with an understanding of finite element analysis.

Finite Element Analysis — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Finite Element Analysis», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать
from which it follows that α must be greater than In the following we will - фото 552

from which it follows that α must be greater than картинка 553.

In the following we will see that when α is not an integer then the degree of difficulty associated with approximating Finite Element Analysis - изображение 554by the finite element method is related to the size of Finite Element Analysis - изображение 555. The smaller картинка 556is, the more difficult it is to approximate картинка 557.

If α is a fractional number then the measure of regularity used in the mathematical literature is the maximum number of square integrable derivatives, with the notion of derivative generalized to fractional numbers. See sections A.2.3and A.2.4in the appendix. For our purposes it is sufficient to remember that if картинка 558has the functional form of eq. (1.89), and α is not an integer, then Finite Element Analysis - изображение 559lies in the Sobolev space Finite Element Analysis - изображение 560where картинка 561is arbitrarily small. This means that α must be larger than картинка 562for the first derivative of картинка 563to be square integrable. See, for example, [59].

If α is an integer then картинка 564is an analytic or piecewise analytic function and the measure of regularity is the size of the derivatives of картинка 565. Analogous definitions apply to two and three dimensions.

Remark 1.9The k th derivative of a function картинка 566is a local property of картинка 567only when k is an integer. This is not the case for non‐integer derivatives.

1.5.2 A priori estimation of the rate of convergence

Analysts are called upon to choose discretization schemes for particular problems. A sound choice of discretization is based on a priori information on the regularity of the exact solution. If we know that the exact solution lies in Sobolev space картинка 568then it is possible to say how fast the error in energy norm will approach zero as the number of degrees of freedom is increased, given a scheme by which a sequence of discretizations is generated. Index k can be inferred or estimated from the input data κ , c and f .

We define

(1.90) where ℓj is the length of the j th element is the size of the of the solution - фото 569

where ℓj is the length of the j th element, картинка 570is the size of the of the solution domain картинка 571. This is generalized to two and three dimensions where картинка 572is the diameter of the domain and ℓj is the diameter of the j th element. In this context diameter means the diameter of the smallest circlein one and two dimensions, or sphere in three dimensions,that contains the element or domain. In two and three dimensions the solution domain is denoted by Ω.

The a priori estimate of the relative error in energy norm for Finite Element Analysis - изображение 573, quasiuniform meshes and polynomial degree p is

(1.91) where is the energy norm k is typically a fractional number and - фото 574

where картинка 575is the energy norm, k is typically a fractional number and картинка 576is a positive constant that depends on k but not on h or p . This inequality gives the upper bound for the asymptotic rate of convergence of the relative error in energy norm as картинка 577or картинка 578[22]. This estimate holds for one, two and three dimensions. For one and two dimensions lower bounds were proven in [13, 24] and [46] and it was shown that when singularities are located in vertex points then the rate of convergence of the p ‐version is twice the rate of convergence of the h ‐version when both are expressed in terms of the number of degrees of freedom. It is reasonable to assume that analogous results can be proven for three dimensions; however, no proofs are available at present.

We will find it convenient to write the relative error in energy norm in the following form

(1.92) Finite Element Analysis - изображение 579

where N is the number of degrees of freedom and C and β are positive constants, β is called the algebraic rate of convergence. In one dimension картинка 580for the h ‐version and картинка 581for the p ‐version. Therefore for картинка 582we have Finite Element Analysis - изображение 583. However, for the important special case when the solution has the functional form of eq. (1.89)or, more generally, has a term like Finite Element Analysis - изображение 584and Finite Element Analysis - изображение 585is a nodal point then Finite Element Analysis - изображение 586for the p ‐version: The rate of p ‐convergence is twice that of h ‐convergence [22, 84].

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Finite Element Analysis»

Представляем Вашему вниманию похожие книги на «Finite Element Analysis» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Finite Element Analysis»

Обсуждение, отзывы о книге «Finite Element Analysis» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x