Edoardo Provenzi - From Euclidean to Hilbert Spaces

Здесь есть возможность читать онлайн «Edoardo Provenzi - From Euclidean to Hilbert Spaces» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: unrecognised, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

From Euclidean to Hilbert Spaces: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «From Euclidean to Hilbert Spaces»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

From Euclidian to Hilbert Spaces analyzes the transition from finite dimensional Euclidian spaces to infinite-dimensional Hilbert spaces, a notion that can sometimes be difficult for non-specialists to grasp. The focus is on the parallels and differences between the properties of the finite and infinite dimensions, noting the fundamental importance of coherence between the algebraic and topological structure, which makes Hilbert spaces the infinite-dimensional objects most closely related to Euclidian spaces.<br /><br />The common thread of this book is the Fourier transform, which is examined starting from the discrete Fourier transform (DFT), along with its applications in signal and image processing, passing through the Fourier series and finishing with the use of the Fourier transform to solve differential equations.<br /><br />The geometric structure of Hilbert spaces and the most significant properties of bounded linear operators in these spaces are also covered extensively. The theorems are presented with detailed proofs as well as meticulously explained exercises and solutions, with the aim of illustrating the variety of applications of the theoretical results.

From Euclidean to Hilbert Spaces — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «From Euclidean to Hilbert Spaces», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать
This holds for any j 1 n so the orthogonal family F is free - фото 97

This holds for any j ∈ {1, . . . , n }, so the orthogonal family F is free.□

Using the general theory of vector spaces in finite dimensions, an immediate corollary can be derived from theorem 1.10.

COROLLARY 1.1.– An orthogonal family of n non-null vectors in a space ( V , 〈, 〉) of dimension n is a basis of V .

DEFINITION 1.6.– A family of n non-null orthogonal vectors in a vector space ( V , 〈, 〉) of dimension n is said to be an orthogonal basis of V . If this family is also orthonormal, it is said to be an orthonormal basis of V .

The extension of the orthogonal basis concept to inner product spaces of infinite dimensions will be discussed in Chapter 5. For the moment, it is important to note that an orthogonal basis is made up of the maximum number of mutually orthogonal vectors in a vector space . Taking n to represent the dimension of the space V and proceeding by reductio ad absurdum, imagine the existence of another vector u *∈ V , u ≠ 0, orthogonal to all of the vectors in an orthogonal basis картинка 98; in this case, the set картинка 99would be free as orthogonal vectors are linearly independent, and the dimension of V would be n + 1 instead of n ! This property is usually expressed by saying that an orthogonal family is a basis if it is not a subset of another orthogonal family of vectors in V .

Note that in order to determine the components of a vector in relation to an arbitrary basis, we must solve a linear system of n equations with n unknown variables. In fact, if vV is any vector and ( u i) i = 1, . . . , n is a basis of V , then the components of v in ( u i) are the scalars α 1, . . . , α nsuch that:

where u ijis the j th component of vector u i However in the presence of an - фото 100

where u i,jis the j -th component of vector u i.

However, in the presence of an orthogonal or orthonormal basis, components are determined by inner products, as seen in Theorem 1.11.

Note, too, that solving a linear system of n equations with n unknown variables generally involves far more operations than the calculation of inner products; this highlights one advantage of having an orthogonal basis for a vector space.

THEOREM 1.11.– Let B = { u 1, . . . , u n} be an orthogonal basis of ( V , 〈, 〉). Then:

From Euclidean to Hilbert Spaces - изображение 101

Notably, if B is an orthonormal basis, then:

From Euclidean to Hilbert Spaces - изображение 102

PROOF.– B is a basis, so there exists a set of scalars α 1, . . . , α nsuch that From Euclidean to Hilbert Spaces - изображение 103. Consider the inner product of this expression of v with a fixed vector u i, i ∈ {1, . . . , n }:

From Euclidean to Hilbert Spaces - изображение 104

so From Euclidean to Hilbert Spaces - изображение 105, and thus From Euclidean to Hilbert Spaces - изображение 106. If B is an orthonormal basis, ‖ u i‖ = 1 giving the second law in the theorem.□

Geometric interpretation of the theorem: The theorem that we are about to demonstrate is the generalization of the decomposition theorem of a vector in plane ℝ 2or in space ℝ 3on a canonical basis of unit vectors on axes. To simplify this, consider the case of ℝ 2.

If картинка 107and are respectively the unit vectors of axes x and y then the decomposition - фото 108are, respectively, the unit vectors of axes x and y , then the decomposition theorem says that:

which is a particular case of the theorem above We will see that the Fourier - фото 109

which is a particular case of the theorem above.

We will see that the Fourier series can be viewed as a further generalization of the decomposition theorem on an orthogonal or orthonormal basis.

1.6. Orthogonal projection in inner product spaces

The definition of orthogonal projection can be extended by examining the geometric and algebraic properties of this operation in ℝ 2and ℝ 3. Let us begin with ℝ 2.

In the Euclidean space ℝ 2, the inner product of a vector v and a unit vector evidently gives us the orthogonal projection of v in the direction defined by this vector, as shown in Figure 1.2with an orthogonal projection along the x axis.

The properties verified by this projection are as follows:

1) projecting onto the x axis a second time, vector P x v obviously remains unchanged given that it is already on the x axis, i.e. Put differently the operator P xbound to the x axis is the identity of this - фото 110. Put differently, the operator P xbound to the x axis is the identity of this axis;

2) the difference vector between v and its projection vP x v is orthogonal to the x axis, as we see from Figure 1.3;

Figure 12 Orthogonal projection and diagonal projections - фото 111

Figure 1.2. Orthogonal projection картинка 112 and diagonal projections картинка 113 and of a vector in v ℝ 2 onto the x axis For a color version of this figure see - фото 114 of a vector in v ∈ ℝ 2 onto the x axis. For a color version of this figure, see www.iste.co.uk/provenzi/spaces.zip

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «From Euclidean to Hilbert Spaces»

Представляем Вашему вниманию похожие книги на «From Euclidean to Hilbert Spaces» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «From Euclidean to Hilbert Spaces»

Обсуждение, отзывы о книге «From Euclidean to Hilbert Spaces» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x