Edoardo Provenzi - From Euclidean to Hilbert Spaces

Здесь есть возможность читать онлайн «Edoardo Provenzi - From Euclidean to Hilbert Spaces» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: unrecognised, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

From Euclidean to Hilbert Spaces: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «From Euclidean to Hilbert Spaces»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

From Euclidian to Hilbert Spaces analyzes the transition from finite dimensional Euclidian spaces to infinite-dimensional Hilbert spaces, a notion that can sometimes be difficult for non-specialists to grasp. The focus is on the parallels and differences between the properties of the finite and infinite dimensions, noting the fundamental importance of coherence between the algebraic and topological structure, which makes Hilbert spaces the infinite-dimensional objects most closely related to Euclidian spaces.<br /><br />The common thread of this book is the Fourier transform, which is examined starting from the discrete Fourier transform (DFT), along with its applications in signal and image processing, passing through the Fourier series and finishing with the use of the Fourier transform to solve differential equations.<br /><br />The geometric structure of Hilbert spaces and the most significant properties of bounded linear operators in these spaces are also covered extensively. The theorems are presented with detailed proofs as well as meticulously explained exercises and solutions, with the aim of illustrating the variety of applications of the theoretical results.

From Euclidean to Hilbert Spaces — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «From Euclidean to Hilbert Spaces», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

The theorem demonstrated above tells us that the vector in the vector subspace SV which is the most “similar” to vV (in the sense of the norm induced by the inner product) is given by the orthogonal projection. The generalization of this result to infinite-dimensional Hilbert spaces will be discussed in Chapter 5.

As already seen for the projection operator in ℝ 2and ℝ 3, the non-negative scalar quantity картинка 138gives a measure of the importance of From Euclidean to Hilbert Spaces - изображение 139in the reconstruction of the best approximation of v in S via the formula From Euclidean to Hilbert Spaces - изображение 140: if this quantity is large, then картинка 141is very important to reconstruct P S( v ), otherwise, in some circumstances, it may be ignored. In the applications to signal compression, a usual strategy consists of reordering the summation that defines P S( v ) in descent order of the quantities картинка 142and trying to eliminate as many small terms as possible without degrading the signal quality.

This observation is crucial to understanding the significance of the Fourier decomposition, which will be examined in both discrete and continuous contexts in the following chapters.

Finally, note that the seemingly trivial equation v = vs + s is, in fact, far more meaningful than it first appears when we know that sS : in this case, we know that vs and s are orthogonal.

The decomposition of a vector as the sum of a component belonging to a subspace S and a component belonging to its orthogonal is known as the orthogonal projection theorem .

This decomposition is unique, and its generalization for infinite dimensions, alongside its consequences for the geometric structure of Hilbert spaces, will be examine in detail in Chapter 5.

1.7. Existence of an orthonormal basis: the Gram-Schmidt process

As we have seen, projection and decomposition laws are much simpler when an orthonormal basis is available.

Theorem 1.13 states that in a finite-dimensional inner product space, an orthonormal basis can always be constructed from a free family of generators.

THEOREM 1.13.– (The iterative Gram-Schmidt process 6) If ( v 1, . . . , v n), n ≼ ∞ is a basis of ( V , 〈, 〉), then an orthonormal basis of ( V , 〈, 〉) can be obtained from ( v 1, . . . , v n).

PROOF.– This proof is constructive in that it provides the method used to construct an orthonormal basis from any arbitrary basis.

– Step 1: normalization of v 1:

картинка 143

– Step 2, illustrated in Figure 1.5: v 2is projected in the direction of u 1, that is, we consider 〈 v 2, u 1〉 u 1. We know from theorem 1.12 that the vector difference v 2− 〈 v 2, u 1〉 u 1is orthogonal to u 1. The result is then normalized:

Figure 15 Illustration of the second step in the GramSchmidt - фото 144 Figure 15 Illustration of the second step in the GramSchmidt - фото 145

Figure 1.5. Illustration of the second step in the Gram-Schmidt orthonormalization process. For a color version of this figure, see www.iste.co.uk/provenzi/spaces.zip

– Step n , by iteration:

18 Fundamental properties of orthonormal and orthogonal bases The most - фото 146

1.8. Fundamental properties of orthonormal and orthogonal bases

The most important properties of an orthonormal basis are listed in theorem 1.14.

THEOREM 1.14.– Let ( u 1, . . . , u n) be an orthonormal basis of ( V , 〈, 〉), dim ( V ) = n. Then , ∀ v, wV :

1) Decomposition theorem on an orthonormal basis :

[1.7] From Euclidean to Hilbert Spaces - изображение 147

2) Parseval’s identity 7 :

[1.8] 3 Plancherels theorem 8 19 Proof of 1 an immediate consequence of - фото 148

3) Plancherel’s theorem 8 :

[1.9] Proof of 1 an immediate consequence of Theorem 112 Given that u 1 - фото 149

Proof of 1 : an immediate consequence of Theorem 1.12. Given that ( u 1, . . . , u n) is a basis, v ∈ span( u 1, . . . , u n); furthermore, ( u 1, . . . , u n) is orthonormal, so From Euclidean to Hilbert Spaces - изображение 150. It is not necessary to divide by ‖ u i‖ 2when summing since ‖ u i‖ = 1 ∀ i .

Proof of 2 : using point 1 it is possible to write From Euclidean to Hilbert Spaces - изображение 151, and calculating the inner product of v , written in this way, and w , using equation [ 1.1], we obtain:

Proof of 3 writing w v on the lefthand side of Parsevals identity gives - фото 152

Proof of 3 : writing w = v on the left-hand side of Parseval’s identity gives us 〈 v, v 〉 = ‖ v ‖ 2. On the right-hand side, we have:

From Euclidean to Hilbert Spaces - изображение 153

hence From Euclidean to Hilbert Spaces - изображение 154.

NOTE.–

1) The physical interpretation of Plancherel’s theorem is as follows: the energy of v , measured as the square of the norm, can be decomposed using the sum of the squared moduli of each projection of v on the n directions of the orthonormal basis ( u 1, ..., u n).

In Fourier theory, the directions of the orthonormal basis are fundamental harmonics (sines and cosines with defined frequencies): this is why Fourier analysis may be referred to as harmonic analysis .

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «From Euclidean to Hilbert Spaces»

Представляем Вашему вниманию похожие книги на «From Euclidean to Hilbert Spaces» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «From Euclidean to Hilbert Spaces»

Обсуждение, отзывы о книге «From Euclidean to Hilbert Spaces» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x