Edoardo Provenzi - From Euclidean to Hilbert Spaces

Здесь есть возможность читать онлайн «Edoardo Provenzi - From Euclidean to Hilbert Spaces» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: unrecognised, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

From Euclidean to Hilbert Spaces: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «From Euclidean to Hilbert Spaces»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

From Euclidian to Hilbert Spaces analyzes the transition from finite dimensional Euclidian spaces to infinite-dimensional Hilbert spaces, a notion that can sometimes be difficult for non-specialists to grasp. The focus is on the parallels and differences between the properties of the finite and infinite dimensions, noting the fundamental importance of coherence between the algebraic and topological structure, which makes Hilbert spaces the infinite-dimensional objects most closely related to Euclidian spaces.<br /><br />The common thread of this book is the Fourier transform, which is examined starting from the discrete Fourier transform (DFT), along with its applications in signal and image processing, passing through the Fourier series and finishing with the use of the Fourier transform to solve differential equations.<br /><br />The geometric structure of Hilbert spaces and the most significant properties of bounded linear operators in these spaces are also covered extensively. The theorems are presented with detailed proofs as well as meticulously explained exercises and solutions, with the aim of illustrating the variety of applications of the theoretical results.

From Euclidean to Hilbert Spaces — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «From Euclidean to Hilbert Spaces», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

2) If ( u 1, . . . , u n) is an orthogonal, rather than an orthonormal, basis, then using the projector formula and theorem 1.12, the results of Theorem 1.14 can be written as:

a) decomposition of vV on an orthogonal basis :

[1.10] From Euclidean to Hilbert Spaces - изображение 155

b) Parseval’s identity for an orthogonal basis :

[1.11] From Euclidean to Hilbert Spaces - изображение 156

c) Plancherel’s theorem for an orthogonal basis :

[1.12] From Euclidean to Hilbert Spaces - изображение 157

The following exercise is designed to test the reader’s knowledge of the theory of finite-dimensional inner product spaces. The two subsequent exercises explicitly include inner products which are non-Euclidean.

Exercise 1.1

Consider the complex Euclidean inner product space 3and the following three vectors 1 Determine the orthogonality relationships - фото 158 3and the following three vectors:

1 Determine the orthogonality relationships between vectors u v w 2 - фото 159

1) Determine the orthogonality relationships between vectors u, v, w .

2) Calculate the norm of u, v, w and the Euclidean distances between them.

3) Verify that ( u, v, w ) is a (non-orthogonal) basis of картинка 160 3.

4) Let S be the vector subspace of картинка 161 3generated by u and w . Calculate P S v , the orthogonal projection of v onto S . Calculate d ( v, P S v ), that is, the Euclidean distance between v and its projection onto S , and verify that this minimizes the distance between v and the vectors of S ( hint : look at the square of the distance).

5) Using the results of the previous questions, determine an orthogonal basis and an orthonormal basis for картинка 162 3without using the Gram-Schmidt orthonormalization process ( hint : remember the geometric relationship between the residual vector r and the subspace S ).

6) Given a vector a = (2 i , −1, 0), write the decomposition of a and Plancherel’s theorem in relation to the orthonormal basis identified in point 5. Use these results to identify the vector from the orthonormal basis which has the heaviest weight in the decomposition of a (and which gives the best “rough approximation” of a ). Use a graphics program to draw the progressive vector sum of a , beginning with the rough approximation and adding finer details supplied by the other vectors.

Solution to Exercise 1.1

1) Evidently, картинка 163, so by directly calculating the inner products: 〈 u, v 〉 = −2, 〈 u, w 〉 = 0 et 2 By direct calculation After calculating the difference vectors we - фото 164.

2) By direct calculation: After calculating the difference vectors we obtain 3 T - фото 165. After calculating the difference vectors, we obtain: 3 The three vectors u v w are linearly independent so they form a basis - фото 166, 3 The three vectors u v w are linearly independent so they form a basis - фото 167.

3) The three vectors u, v, w are linearly independent, so they form a basis in картинка 168 3. This basis is not orthogonal since only vectors u and w are orthogonal.

4) S = span( u, w ). Since ( u, w ) is an orthogonal basis in S , we can write:

The residual vector of the projection of v on S is r v P S v 2 i 0 0 - фото 169

The residual vector of the projection of v on S is r = vP S v = (2 i , 0, 0) and thus d ( v, P S v ) 2= ‖ r ‖ 2= 4. The most general vector in S is and This confirms that P S v is the vector in S with the minimum distance - фото 170and This confirms that P S v is the vector in S with the minimum distance from v - фото 171. This confirms that P S v is the vector in S with the minimum distance from v in relation to the Euclidean norm.

5) r is orthogonal to S , which is generated by u and w , hence ( u, w, r ) is a set of orthogonal vectors in картинка 172 3, that is, an orthogonal basis of 3 To obtain an orthonormal basis we then simply divide each vector by its - фото 173 3. To obtain an orthonormal basis, we then simply divide each vector by its norm:

6 Decomposition Plancherels theorem The ve - фото 174

6) Decomposition: Plancherels theorem The vector with the heaviest weight in the - фото 175.

Plancherel’s theorem: The vector with the heaviest weight in the reconstruction of a is thus r - фото 176.

The vector with the heaviest weight in the reconstruction of a is thus : this vector gives the best rough approximation of a . By calculating the vector sum of this rough representation and the other two vectors, we can reconstruct the “fine details” of a , first with ŵ and then with û .

Exercise 1.2

Let M ( n , картинка 177) be the space of n × n complex matrices. The application ϕ : M ( n , картинка 178) × M ( n , From Euclidean to Hilbert Spaces - изображение 179) From Euclidean to Hilbert Spaces - изображение 180is defined by:

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «From Euclidean to Hilbert Spaces»

Представляем Вашему вниманию похожие книги на «From Euclidean to Hilbert Spaces» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «From Euclidean to Hilbert Spaces»

Обсуждение, отзывы о книге «From Euclidean to Hilbert Spaces» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x