Edoardo Provenzi - From Euclidean to Hilbert Spaces

Здесь есть возможность читать онлайн «Edoardo Provenzi - From Euclidean to Hilbert Spaces» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: unrecognised, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

From Euclidean to Hilbert Spaces: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «From Euclidean to Hilbert Spaces»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

From Euclidian to Hilbert Spaces analyzes the transition from finite dimensional Euclidian spaces to infinite-dimensional Hilbert spaces, a notion that can sometimes be difficult for non-specialists to grasp. The focus is on the parallels and differences between the properties of the finite and infinite dimensions, noting the fundamental importance of coherence between the algebraic and topological structure, which makes Hilbert spaces the infinite-dimensional objects most closely related to Euclidian spaces.<br /><br />The common thread of this book is the Fourier transform, which is examined starting from the discrete Fourier transform (DFT), along with its applications in signal and image processing, passing through the Fourier series and finishing with the use of the Fourier transform to solve differential equations.<br /><br />The geometric structure of Hilbert spaces and the most significant properties of bounded linear operators in these spaces are also covered extensively. The theorems are presented with detailed proofs as well as meticulously explained exercises and solutions, with the aim of illustrating the variety of applications of the theoretical results.

From Euclidean to Hilbert Spaces — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «From Euclidean to Hilbert Spaces», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать
From Euclidean to Hilbert Spaces - изображение 181

where картинка 182denotes the adjoint matrix of B and tr is the matrix trace. Prove that ϕ is an inner product.

Solution to Exercise 1.2

The distributive property of matrix multiplication for addition and the linearity of the trace establishes the linearity of ϕ in relation to the first variable.

Now, let us prove that ϕ is Hermitian. Let A = ( ai ,j) 1≼i,j≼nand B = ( bi ,j) 1≼i,j≼nbe two matrices in M ( n , Let be the coefficients of the matrix B and let be the coef - фото 183). Let be the coefficients of the matrix B and let be the coefficients of A This - фото 184be the coefficients of the matrix B †and let be the coefficients of A This gives us Thus ϕ is a sesquilinear Hermitian - фото 185be the coefficients of A †.

This gives us:

Thus ϕ is a sesquilinear Hermitian form Furthermore ϕ is positive It is - фото 186

Thus, ϕ is a sesquilinear Hermitian form. Furthermore, ϕ is positive:

It is also definite Thus ϕ is an inner product Exercise 13 Let E ℝ X - фото 187

It is also definite:

Thus ϕ is an inner product Exercise 13 Let E ℝ X be the vector space - фото 188

Thus, ϕ is an inner product.

Exercise 1.3

Let E = ℝ[ X ] be the vector space of single variable polynomials with real coefficients. For P, QE , take:

From Euclidean to Hilbert Spaces - изображение 189

1) Remember that From Euclidean to Hilbert Spaces - изображение 190means that Ǝ a, C > 0 such that | tt 0| < a f t C g t Prove that for all P Q E this is equal to and - фото 191| f ( t )| ≼ C | g ( t )|. Prove that for all P, QE , this is equal to:

and Use this result to deduce that Φ is definite over E E 2 Prove that Φ - фото 192

and:

Use this result to deduce that Φ is definite over E E 2 Prove that Φ is an - фото 193

Use this result to deduce that Φ is definite over E × E .

2) Prove that Φ is an inner product over E , which we shall note 〈 , 〉.

3) For n ∈ ℕ, let T nbe the n -th Chebyshev polynomial , that is, the only polynomial such that ∀ θ ∈ ℝ, T n(cos θ ) = cos( ). Applying the substitution t = cos θ , show that ( T n) n∈ℕis an orthogonal family in E . Hint: use the trigonometric formula [ 1.13]:

[1.13] 4 Prove that for all n ℕ T 0 T n is an orthogonal basis of ℝ n - фото 194

4) Prove that for all n ∈ ℕ, ( T 0, . . . , T n) is an orthogonal basis of ℝ n[ X ], the vector space of polynomials in ℝ[ X ] of degree less than or equal to n . Deduce that ( T n) n∈ℕis an orthogonal basis in the algebraic sense: every element in E is a finite linear combination of elements in the basis of E .

5) Calculate the norm of T nfor all n and deduce an orthonormal basis (in the algebraic sense) of E using this result.

Solution to Exercise 1.3

1) We write From Euclidean to Hilbert Spaces - изображение 195. Since P and Q are polynomials, the function From Euclidean to Hilbert Spaces - изображение 196is continuous in a neighborhood V 1(1) and thus, according to the Weierstrass theorem, it is bounded in this neighborhood, that is, Ǝ C 1> 0 such that From Euclidean to Hilbert Spaces - изображение 197. Similarly, the function From Euclidean to Hilbert Spaces - изображение 198is continuous in a neighborhood V 2(−1), thus Ǝ C 2> 0 such that This gives us and This implies that the integral d - фото 199. This gives us:

and This implies that the integral defining Φ is definite f t is - фото 200

and:

This implies that the integral defining Φ is definite f t is continuous - фото 201

This implies that the integral defining Φ is definite; f ( t ) is continuous over (−1, 1) and therefore can be integrated. The result which we have just proved shows that f ( t ) is integrable in a right neighborhood of –1 and a left neighborhood of 1, as the integral of its absolute value is incremented by an integrable function in both cases.

2) The bilinearity of Φ is obtained from the linearity of the integral using direct calculation. Its symmetry is a consequence of that of the dot product between functions. The only property which is not immediately evident is definite positiveness. Let us start by proving positiveness:

and 9 but the only polynomial with an infinite number of roots is the null - фото 202

and 9:

but the only polynomial with an infinite number of roots is the null polynomial - фото 203

but the only polynomial with an infinite number of roots is the null polynomial 0( t ) ≡ 0, so P = 0. Φ is therefore an inner product on E .

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «From Euclidean to Hilbert Spaces»

Представляем Вашему вниманию похожие книги на «From Euclidean to Hilbert Spaces» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «From Euclidean to Hilbert Spaces»

Обсуждение, отзывы о книге «From Euclidean to Hilbert Spaces» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x