Edoardo Provenzi - From Euclidean to Hilbert Spaces

Здесь есть возможность читать онлайн «Edoardo Provenzi - From Euclidean to Hilbert Spaces» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: unrecognised, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

From Euclidean to Hilbert Spaces: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «From Euclidean to Hilbert Spaces»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

From Euclidian to Hilbert Spaces analyzes the transition from finite dimensional Euclidian spaces to infinite-dimensional Hilbert spaces, a notion that can sometimes be difficult for non-specialists to grasp. The focus is on the parallels and differences between the properties of the finite and infinite dimensions, noting the fundamental importance of coherence between the algebraic and topological structure, which makes Hilbert spaces the infinite-dimensional objects most closely related to Euclidian spaces.<br /><br />The common thread of this book is the Fourier transform, which is examined starting from the discrete Fourier transform (DFT), along with its applications in signal and image processing, passing through the Fourier series and finishing with the use of the Fourier transform to solve differential equations.<br /><br />The geometric structure of Hilbert spaces and the most significant properties of bounded linear operators in these spaces are also covered extensively. The theorems are presented with detailed proofs as well as meticulously explained exercises and solutions, with the aim of illustrating the variety of applications of the theoretical results.

From Euclidean to Hilbert Spaces — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «From Euclidean to Hilbert Spaces», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

1.3. Orthogonal and orthonormal families in inner product spaces

The “geometric” definition of an inner product in ℝ 2and ℝ 3indicates that this product is zero if and only if ϑ , the angle between the vectors, is π /2, which implies cos( ϑ ) = 0.

In more complicated vector spaces (e.g. polynomial spaces), or even Euclidean vector spaces of more than three dimensions, it is no longer possible to visualize vectors; their orthogonality must therefore be “axiomatized” via the nullity of their scalar product.

DEFINITION 1.5.– Let ( V , 〈, 〉) be a real or complex inner product space of finite dimension n. Let F = { v 1, · · · , v n} be a family of vectors in V . Thus:

– F is an orthogonal family of vectors if each different vector pair has an inner product of 0:v i, v j〉 = 0 ;

– F is an orthonormal family if it is orthogonal and, furthermore , ‖ v i‖ = 1 ∀ i. Thus, if From Euclidean to Hilbert Spaces - изображение 77 is an orthogonal family , From Euclidean to Hilbert Spaces - изображение 78 is an orthonormal family.

An orthonormal family (unit and orthogonal vectors) may be characterized as follows:

δ ijis the Kronecker delta 5 14 Generalized Pythagorean theorem The - фото 79

δ i,jis the Kronecker delta 5.

1.4. Generalized Pythagorean theorem

The Pythagorean theorem can be generalized to abstract inner product spaces. The general formulation of this theorem is obtained using a lemma.

LEMMA 1.1.– Let ( V , 〈, 〉) be a real or complex inner product space. Let uV be orthogonal to all vectors v 1, . . . , v n∈ V . Hence, u is also orthogonal to all vectors in V obtained as a linear combination of v 1, . . . , v n.

PROOF.– Let be an arbitrary linear combination of vectors v 1 v n By direct - фото 80, be an arbitrary linear combination of vectors v 1, . . . , v n. By direct calculation:

THEOREM 18 Generalized Pythagorean theorem Let V be an inner - фото 81

THEOREM 1.8 (Generalized Pythagorean theorem).– Let ( V , 〈, 〉) be an inner product space on From Euclidean to Hilbert Spaces - изображение 82. Let u, vV be orthogonal to each other. Hence:

From Euclidean to Hilbert Spaces - изображение 83

More generally, if the vectors v 1,. . . , v n∈ V are orthogonal, then:

PROOF The twovector case can be proven thanks to Carnots formula Proof - фото 84

PROOF.– The two-vector case can be proven thanks to Carnot’s formula:

Proof for cases with n vectors is obtained by recursion the case where n 2 - фото 85

Proof for cases with n vectors is obtained by recursion:

– the case where n = 2 is demonstrated above;

– we suppose that From Euclidean to Hilbert Spaces - изображение 86(recursion hypothesis);

– now, we write u = v nand From Euclidean to Hilbert Spaces - изображение 87, so uz using Lemma 1.1. Hence, using case n = 2: ‖ u + z ‖ 2= ‖ u ‖ 2+ ‖ z ‖ 2, but:

so and giving us the desired thesis Note - фото 88

so:

and giving us the desired thesis Note that the Pythagorean theorem thesis is - фото 89

and:

giving us the desired thesis Note that the Pythagorean theorem thesis is a - фото 90

giving us the desired thesis.

Note that the Pythagorean theorem thesis is a double implication if and only if V is real , in fact, using law [ 1.6] we have that ‖ u + v ‖ 2= ‖ u ‖ 2+ ‖ v ‖ 2holds true if and only if ℜ(〈 u, v 〉) = 0, which is equivalent to orthogonality if and only if V is real.

The following result gives information concerning the distance between any two vectors within an orthonormal family.

THEOREM 1.9.– Let ( V , 〈, 〉) be an inner product space on картинка 91and let F be an orthonormal family in V . The distance between any two elements of F is constant and equal to картинка 92.

PROOF.– Using the Pythagorean theorem: ‖ u + (− v )‖ 2= ‖ u ‖ 2+ ‖ v ‖ 2= 2, from the fact that uv .□

1.5. Orthogonality and linear independence

The orthogonality condition is more restrictive than that of linear independence: all orthogonal families are free .

THEOREM 1.10.– Let F be an orthogonal family in ( V , 〈, 〉), F = { v 1, · · · , v n}, v i≠ 0 ∀ i , then F is free.

PROOF.– We need to prove the linear independence of the elements v i, that is, To this end we calculate the inner product of the linear combination and an - фото 93. To this end, we calculate the inner product of the linear combination and an arbitrary vector v jwith j 1 n By hypothesis none of - фото 94and an arbitrary vector v jwith j ∈ {1, . . . , n }:

From Euclidean to Hilbert Spaces - изображение 95

By hypothesis, none of the vectors in F are zero; the hypothesis that From Euclidean to Hilbert Spaces - изображение 96therefore implies that:

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «From Euclidean to Hilbert Spaces»

Представляем Вашему вниманию похожие книги на «From Euclidean to Hilbert Spaces» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «From Euclidean to Hilbert Spaces»

Обсуждение, отзывы о книге «From Euclidean to Hilbert Spaces» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x