Edoardo Provenzi - From Euclidean to Hilbert Spaces

Здесь есть возможность читать онлайн «Edoardo Provenzi - From Euclidean to Hilbert Spaces» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: unrecognised, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

From Euclidean to Hilbert Spaces: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «From Euclidean to Hilbert Spaces»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

From Euclidian to Hilbert Spaces analyzes the transition from finite dimensional Euclidian spaces to infinite-dimensional Hilbert spaces, a notion that can sometimes be difficult for non-specialists to grasp. The focus is on the parallels and differences between the properties of the finite and infinite dimensions, noting the fundamental importance of coherence between the algebraic and topological structure, which makes Hilbert spaces the infinite-dimensional objects most closely related to Euclidian spaces.<br /><br />The common thread of this book is the Fourier transform, which is examined starting from the discrete Fourier transform (DFT), along with its applications in signal and image processing, passing through the Fourier series and finishing with the use of the Fourier transform to solve differential equations.<br /><br />The geometric structure of Hilbert spaces and the most significant properties of bounded linear operators in these spaces are also covered extensively. The theorems are presented with detailed proofs as well as meticulously explained exercises and solutions, with the aim of illustrating the variety of applications of the theoretical results.

From Euclidean to Hilbert Spaces — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «From Euclidean to Hilbert Spaces», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

In n the complex Euclidean inner product is defined by where v v 1 v 2 - фото 36 n, the complex Euclidean inner product is defined by:

where v v 1 v 2 v n w w 1 w 2 w n nare - фото 37

where v = ( v 1, v 2, . . . , v n), w = ( w 1, w 2, . . . , w n) ∈ From Euclidean to Hilbert Spaces - изображение 38 nare written with their components in relation to any given, but fixed, basis From Euclidean to Hilbert Spaces - изображение 39in картинка 40 n.

The symbol картинка 41will be used throughout to represent either ℝ or картинка 42in the context of properties which are valid independently of the reality or complexity of the inner product.

THEOREM 1.1.– Let ( V , 〈 , 〉) be an inner product space. We have:

1) 〈 v , 0 V〉 = 0 ∀ vV ;

2) if 〈 u, w 〉 = 〈 v, w 〉 ∀ wV , then u and v must coincide;

3) 〈 v, w 〉 = 0 ∀ vV картинка 43 w = 0 V, i.e. the null vector is the only vector which is orthogonal to all of the other vectors.

PROOF.–

1) 〈 v , 0 V〉 = 〈 v , 0 V+ 0 V〉 = 〈 v , 0 V〉 + 〈 v , 0 V〉 by linearity, i.e. 〈 v , 0 V〉 − 〈 v , 0 V〉 = 0 = 〈 v , 0 V〉.

2) 〈 u, w 〉 = 〈 v, w 〉 ∀ wV implies, by linearity, that 〈 uv, w 〉 = 0 ∀ wV and thus, notably, considering w = uv , we obtain 〈 uv, uv 〉 = 0, implying, due to the definite positiveness of the inner product, that uv = 0 V, i.e. u = v .

3) If w = 0 V, then 〈 v, w 〉 = 0 ∀ vV using property (1). Inversely, by hypothesis, it holds that 〈 v, w 〉 = 0 = 〈 v , 0 V〉 ∀ vV , but then property (2) implies that w = 0 V.

Finally, let us consider a typical property of the complex inner product, which results directly from a property of complex numbers.

THEOREM 1.2.– Let ( V , 〈 , 〉) be a complex inner product space. Thus:

PROOF Consider any complex number z a ib so iz b ia hence b ℑ - фото 44

PROOF.– Consider any complex number z = a + ib , so − iz = bia , hence b = ℑ ( z ) = ℜ (− iz ). Taking z = 〈 v, w 〉, we obtain ℑ (〈 v, w 〉) = ℜ (− iv, w 〉) = ℜ (〈 v, iw 〉) by sesquilinearity.

1.2. The norm associated with an inner product and normed vector spaces

If ( V , 〈, 〉) is an inner product space over then a norm on V can be defined as follows Note that v is well defined - фото 45, then a norm on V can be defined as follows:

Note that v is well defined since v v 0 v V Once a norm has - фото 46

Note that ‖ v ‖ is well defined since 〈 v, v 〉 ≽ 0 ∀ vV . Once a norm has been established, it is always possible to define a distance between two vectors v, w in V : d ( v, w ) = ‖ vw ‖.

The vector vV such that ‖ v ‖= 1 is known as a unit vector . Every vector vV can be normalized to produce a unit vector, simply by dividing it by its norm.

NOTABLE EXAMPLES.–

Three properties of the norm which should already be known are listed below - фото 47

Three properties of the norm, which should already be known, are listed below. Taking any v, wV , and any αкартинка 48:

1) ‖ v ‖≽ 0, ‖ v ‖= 0 картинка 49 v = 0 V;

2) ‖ αv ‖= | α |‖ v ‖(homogeneity);

3) ‖ v + w ‖≼ ‖ v ‖+ ‖ w ‖(triangle inequality).

DEFINITION 1.4 (normed vector space).– A normed vector space is a pair ( V , ‖ ‖) given by a vector space V and a function, called a norm , From Euclidean to Hilbert Spaces - изображение 50, satisfying the three properties listed above.

A norm ‖ ‖ is Hilbertian if there exists an inner product 〈 , 〉 on V such that From Euclidean to Hilbert Spaces - изображение 51.

Canonically, an inner product space is therefore a normed vector space. Counterexamples can be used to show that the reverse is not generally true.

Note that, by definition, 〈 v, v 〉 = ‖ v ‖ ‖ v ‖, but, in general, the magnitude of the inner product between two different vectors is dominated by the product of their norms. This is the result of the well-known inequality shown below.

THEOREM 1.3 (Cauchy-Schwarz inequality).– For all v, w ∈ ( V , 〈 , 〉) we have:

From Euclidean to Hilbert Spaces - изображение 52

PROOF.– Dozens of proofs of the Cauchy-Schwarz inequality have been produced. One of the most elegant proofs is shown below, followed by the simplest one:

first proof : if w = 0 V, then the inequality is verified trivially with 0 = 0. If w ≠ 0 V, then we can define From Euclidean to Hilbert Spaces - изображение 53, i.e. From Euclidean to Hilbert Spaces - изображение 54and we note that:

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «From Euclidean to Hilbert Spaces»

Представляем Вашему вниманию похожие книги на «From Euclidean to Hilbert Spaces» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «From Euclidean to Hilbert Spaces»

Обсуждение, отзывы о книге «From Euclidean to Hilbert Spaces» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x