Edoardo Provenzi - From Euclidean to Hilbert Spaces

Здесь есть возможность читать онлайн «Edoardo Provenzi - From Euclidean to Hilbert Spaces» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: unrecognised, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

From Euclidean to Hilbert Spaces: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «From Euclidean to Hilbert Spaces»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

From Euclidian to Hilbert Spaces analyzes the transition from finite dimensional Euclidian spaces to infinite-dimensional Hilbert spaces, a notion that can sometimes be difficult for non-specialists to grasp. The focus is on the parallels and differences between the properties of the finite and infinite dimensions, noting the fundamental importance of coherence between the algebraic and topological structure, which makes Hilbert spaces the infinite-dimensional objects most closely related to Euclidian spaces.<br /><br />The common thread of this book is the Fourier transform, which is examined starting from the discrete Fourier transform (DFT), along with its applications in signal and image processing, passing through the Fourier series and finishing with the use of the Fourier transform to solve differential equations.<br /><br />The geometric structure of Hilbert spaces and the most significant properties of bounded linear operators in these spaces are also covered extensively. The theorems are presented with detailed proofs as well as meticulously explained exercises and solutions, with the aim of illustrating the variety of applications of the theoretical results.

From Euclidean to Hilbert Spaces — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «From Euclidean to Hilbert Spaces», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

From this perspective, the theory of Hilbert spaces may be seen as an elegant conjunction of algebra, analysis and topology. It draws on the work of some of the great mathematicians of the early 20th century, including Riesz, Banach and, evidently, Hilbert, who established the conditions needed to extend classical algebra and analysis into infinite dimensions.

One particularly important linear operator, the Fourier transform, appears on multiple occasions throughout this book. We start by examining the properties of this transform in finite dimensions, with the discrete Fourier transform, before extending it to infinite dimensions, considering the use of this operator in a range of different domains, including signal and image processing.

A clear understanding of the concepts introduced in this book is essential for mathematicians, physicists or engineers hoping to progress in any field, whether applied or theoretical. These concepts provide access to tools and techniques developed over a particularly rich, creative period in the history of mathematics, which remain relevant for both pure and applied forms of the subject.

The author would like to thank Olivier Husson for his assistance in producing the majority of the figures included in this book.

April 2021

1

Inner Product Spaces (Pre-Hilbert)

This chapter will focus on inner product spaces, that is, vector spaces with a scalar product, specifically those of finite dimension .

1.1. Real and complex inner products

In real Euclidean spaces ℝ 2and ℝ 3, the inner product of two vectors v, w is defined as the real number:

where ϑ is the smallest angle between v and w and represents the norm or - фото 2

where ϑ is the smallest angle between v and w and ‖ ‖ represents the norm (or the magnitude) of the vectors.

Using the inner product, it is possible to define the orthogonal projection of vector v in the direction defined by vector w . A distinction must be made between:

1 – the scalar projection of v in the direction of ; and

2 – the vector projection of v in the direction of ;

where картинка 3is the unit vector in the direction of w . Evidently, the roles of v and w can be reversed.

The absolute value of the scalar projection measures the “similarity” of the directions of two vectors . To understand this concept, consider two remarkable relative positions between v and w :

1 – if v and w possess the same direction, then the angle between them ϑ is either null or π, hence cos(ϑ) = ±1, that is, the absolute value of the scalar projection of v in direction w is ‖v‖;

2 – however, if v and w are perpendicular, then and hence cos(ϑ) = 0, showing that the scalar projection of v in direction w is null.

When the position of v relative to w falls somewhere in the interval between the two vectors described above, the absolute value of the scalar projection of v in the direction of w falls between 0 and ‖ v ‖; this explains its use to measure the similarity of the direction of vectors.

In this book, we shall consider vector spaces which are far more complex than ℝ 2and ℝ 3, and the measure of vector similarity obtained through projection supplies crucial information concerning the coherence of directions.

Before we can obtain this information, we must begin by moving from Euclidean spaces ℝ 2and ℝ 3to abstract vector spaces. The general definition of an inner product and an orthogonal projection in these spaces may be seen as an extension of the previous definitions, permitting their application to spaces in which our representation of vectors is no longer applicable.

Geometric properties, which can only be apprehended and, notably, visualized in two or three dimensions, must be replaced by a set of algebraic properties which can be used in any dimension.

Evidently, these algebraic properties must be necessary and sufficient to characterize the inner product of vectors in a plane or in real space. This approach, in which we generalize concepts which are “intuitive” in two or three dimensions, is a classic approach in mathematics.

In this chapter, the symbol V will be used to describe a vector space defined over the field картинка 4, where картинка 5is either ℝ or картинка 6and is of finite dimension n < +∞. field картинка 7contains the scalars used to construct linear combinations between vectors in V . Note that two finite dimensional vector spaces are isomorphic if and only if they are of the same dimension. Furthermore, if we establish a basis B = ( b 1, . . . , b n) for V , an isomorphism between V and ncan be constructed as follows that is I associates each v V with the - фото 8 ncan be constructed as follows:

that is I associates each v V with the vector of ngiven by the scalar - фото 9

that is, I associates each vV with the vector of картинка 10 ngiven by the scalar components of v in relation to the established basis B . Since I is an isomorphism, it follows that картинка 11 n is the prototype of all vector spaces of dimension n over a field картинка 12.

DEFINITION 1.1.– Let V be a vector space defined over a field картинка 13.

A картинка 14 -form over V is an application defined over V × V with values in that is DEFINITION 12 Let V be a real vector space A couple V - фото 15, that is:

DEFINITION 12 Let V be a real vector space A couple V is said to - фото 16

DEFINITION 1.2.– Let V be a real vector space. A couple ( V , 〈, 〉) is said to be a real inner product space (or a real pre-Hilbert space) if the form 〈, 〉 is:

1) bilinear, i.e.1 linear in relation to each argument (the other being fixed):

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «From Euclidean to Hilbert Spaces»

Представляем Вашему вниманию похожие книги на «From Euclidean to Hilbert Spaces» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «From Euclidean to Hilbert Spaces»

Обсуждение, отзывы о книге «From Euclidean to Hilbert Spaces» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x