1 Chapter 2 Table 2.1. Different normalizations of Fourier bases and relative formulasTable 2.2. Fourier pairs and translationTable 2.3. Fourier pairs relative to convolutionTable 2.4. Fourier pair for the convolution between a signal z and the unit puls...Table 2.5. Fourier pairs for 2D shifts
2 Chapter 5Table 5.1. Analogies between a finite-dimensional Euclidean space and an infinit...
3 Chapter 6Table 6.1. Properties of the Fourier transform on S(ℝ)Table 6.2. Properties of the Fourier transform on S(ℝn)
1 v
2 ii
3 iii
4 iv
5 xi
6 xii
7 1
8 2
9 3
10 4
11 5
12 6
13 7
14 8
15 9
16 10
17 11
18 12
19 13
20 14
21 15
22 16
23 17
24 18
25 19
26 20
27 21
28 22
29 23
30 24
31 25
32 26
33 27
34 28
35 29
36 31
37 32
38 33
39 34
40 35
41 36
42 37
43 38
44 39
45 40
46 41
47 42
48 43
49 44
50 45
51 46
52 47
53 48
54 49
55 50
56 51
57 52
58 53
59 54
60 55
61 56
62 57
63 58
64 59
65 60
66 61
67 62
68 63
69 64
70 65
71 66
72 67
73 68
74 69
75 70
76 71
77 72
78 73
79 74
80 75
81 76
82 77
83 78
84 79
85 80
86 81
87 82
88 83
89 84
90 85
91 86
92 87
93 88
94 89
95 90
96 91
97 92
98 93
99 94
100 95
101 96
102 97
103 98
104 99
105 100
106 101
107 102
108 103
109 105
110 106
111 107
112 108
113 109
114 110
115 111
116 112
117 113
118 114
119 115
120 116
121 117
122 118
123 119
124 120
125 121
126 122
127 123
128 124
129 125
130 126
131 127
132 128
133 129
134 130
135 131
136 132
137 133
138 134
139 135
140 136
141 137
142 138
143 139
144 140
145 141
146 142
147 143
148 144
149 145
150 146
151 147
152 148
153 149
154 150
155 151
156 152
157 153
158 154
159 155
160 156
161 157
162 158
163 159
164 160
165 161
166 162
167 163
168 164
169 165
170 166
171 167
172 168
173 169
174 170
175 171
176 172
177 173
178 174
179 175
180 176
181 177
182 178
183 179
184 180
185 181
186 182
187 183
188 184
189 185
190 186
191 187
192 188
193 189
194 190
195 191
196 192
197 193
198 194
199 195
200 196
201 197
202 198
203 199
204 200
205 201
206 202
207 203
208 204
209 205
210 206
211 207
212 208
213 209
214 210
215 211
216 212
217 213
218 214
219 215
220 216
221 217
222 218
223 219
224 220
225 221
226 222
227 223
228 224
229 225
230 226
231 227
232 228
233 229
234 230
235 231
236 232
237 233
238 234
239 235
240 236
241 237
242 238
243 239
244 240
245 241
246 242
247 243
248 244
249 245
250 246
251 247
252 248
253 249
254 250
255 251
256 252
257 253
258 254
259 255
260 256
261 257
262 258
263 259
264 260
265 261
266 262
267 263
268 264
269 265
270 266
271 267
272 268
273 269
274 270
275 271
276 272
277 273
278 274
279 275
280 276
281 277
282 278
283 279
284 280
285 281
286 282
287 283
288 284
289 285
290 286
291 287
292 288
293 289
294 290
295 291
296 292
297 293
298 294
299 295
300 296
301 297
302 298
303 299
304 300
305 301
306 302
307 303
308 304
309 305
310 306
311 307
312 308
313 309
314 310
315 311
316 312
317 313
318 314
319 315
320 316
321 317
322 318
323 319
324 320
325 321
326 322
327 323
328 324
329 325
330 326
331 327
332 329
333 330
334 331
335 332
336 333
337 334
338 335
339 336
340 337
341 338
342 339
343 340
344 341
345 342
346 343
347 344
348 345
349 346
350 347
351 348
To my mentors, Sissa Abbati and Renzo Cirelli, who taught me the importance of rigor in mathematics, and to Brunella, Paola, Clara and Tommo, whose passion for their work has both helped and brought joy to many
From Euclidean to Hilbert Spaces
Introduction to Functional Analysis and its Applications
Edoardo Provenzi
First published 2021 in Great Britain and the United States by ISTE Ltd and John Wiley & Sons, Inc.
Apart from any fair dealing for the purposes of research or private study, or criticism or review, as permitted under the Copyright, Designs and Patents Act 1988, this publication may only be reproduced, stored or transmitted, in any form or by any means, with the prior permission in writing of the publishers, or in the case of reprographic reproduction in accordance with the terms and licenses issued by the CLA. Enquiries concerning reproduction outside these terms should be sent to the publishers at the undermentioned address:
ISTE Ltd
27-37 St George’s Road
London SW19 4EU
UK
www.iste.co.uk
John Wiley & Sons, Inc.
111 River Street
Hoboken, NJ 07030
USA
www.wiley.com
© ISTE Ltd 2021
The rights of Edoardo Provenzi to be identified as the author of this work have been asserted by him in accordance with the Copyright, Designs and Patents Act 1988.
Library of Congress Control Number: 2021937006
British Library Cataloguing-in-Publication Data
A CIP record for this book is available from the British Library
ISBN 978-1-78630-682-1
This book provides an introduction to the key theoretical concepts associated with Hilbert spaces and with operators defined over these spaces.
Our decision to dedicate a whole book to the subject of Hilbert spaces stems from a simple observation: of all the infinite dimensional vector spaces, Hilbert spaces bear the closest resemblance to finite dimensional Euclidean spaces, that is, ℝ nor C n, which provide the framework for classical analysis and linear algebra.
The topological subtleties which come into play when using infinite dimensions mean that certain conditions (which are always verified in finite dimensions) must be posed in order to maintain the validity of known results from Euclidian spaces. For Hilbert spaces, one of these topological conditions is completeness, that is, any Cauchy sequence must converge in the space in which it is defined.
Читать дальше