Edoardo Provenzi - From Euclidean to Hilbert Spaces

Здесь есть возможность читать онлайн «Edoardo Provenzi - From Euclidean to Hilbert Spaces» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: unrecognised, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

From Euclidean to Hilbert Spaces: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «From Euclidean to Hilbert Spaces»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

From Euclidian to Hilbert Spaces analyzes the transition from finite dimensional Euclidian spaces to infinite-dimensional Hilbert spaces, a notion that can sometimes be difficult for non-specialists to grasp. The focus is on the parallels and differences between the properties of the finite and infinite dimensions, noting the fundamental importance of coherence between the algebraic and topological structure, which makes Hilbert spaces the infinite-dimensional objects most closely related to Euclidian spaces.<br /><br />The common thread of this book is the Fourier transform, which is examined starting from the discrete Fourier transform (DFT), along with its applications in signal and image processing, passing through the Fourier series and finishing with the use of the Fourier transform to solve differential equations.<br /><br />The geometric structure of Hilbert spaces and the most significant properties of bounded linear operators in these spaces are also covered extensively. The theorems are presented with detailed proofs as well as meticulously explained exercises and solutions, with the aim of illustrating the variety of applications of the theoretical results.

From Euclidean to Hilbert Spaces — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «From Euclidean to Hilbert Spaces», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать
thus as the two intermediate terms in the penultimate step are zero since - фото 55

thus:

as the two intermediate terms in the penultimate step are zero since z w - фото 56

as the two intermediate terms in the penultimate step are zero, since 〈 z, w 〉 = 〈 w, z 〉 = 0.

As ‖ z ‖ 2≽ 0, we have seen that:

ie v w 2 v 2 w 2 hence v w v w second - фото 57

i.e. |〈 v, w 〉| 2≼ ‖ v ‖ 2‖ w ‖ 2, hence |〈 v, w 〉| ≼ ‖ v ‖‖ w ‖;

second proof (in one line!): ∀ t ∈ ℝ we have:

The CauchySchwarz inequality allows the concept of the angle between two - фото 58

The Cauchy-Schwarz inequality allows the concept of the angle between two vectors to be generalized for abstract vector spaces. In fact, it implies the existence of a coefficient k between −1 and +1 such that 〈 v, w 〉 = ‖ v ‖‖ wk , but, given that the restriction of cos to [0, π ] creates a bijection with [−1, 1], this means that there is only one ϑ ∈ [0, π ] such that 〈 v, w 〉 = ‖ v ‖‖ w ‖ cos ϑ . ϑ ∈ [0, π ] is known as the angle between the two vectors v and w .

Another very important property of the norm is as follows.

THEOREM 1.4.– Let ( V , ‖ ‖) be an arbitrary normed vector space and v, wV . We have:

[1.3] From Euclidean to Hilbert Spaces - изображение 59

PROOF.– On one side:

by the triangle inequality thus v w v w On the other side - фото 60

by the triangle inequality, thus ‖ v ‖ − ‖ w ‖ ≼ ‖ vw ‖. On the other side:

thus w v v w ie v w v w Hence v - фото 61

thus ‖ w ‖ − ‖ v ‖ ≼ ‖ vw ‖, i.e. ‖ v ‖ − ‖ w ‖ ≽ − ‖ vw ‖.

Hence, −‖ vw ‖ ≼ ‖ v ‖ − ‖ w ‖ ≼ ‖ vw ‖, i.e. |‖ v ‖ − ‖ w ‖| ≼ ‖ vw ‖.

The following formula is also extremely useful.

THEOREM 1.5 (Carnot’s theorem).– Taking v, w ∈ ( V , 〈 , 〉):

[1.4] and 15 PROOF Direct calculation - фото 62

and

[1.5] PROOF Direct calculation If - фото 63

PROOF.– Direct calculation:

If then - фото 64

If From Euclidean to Hilbert Spaces - изображение 65= From Euclidean to Hilbert Spaces - изображение 66, then From Euclidean to Hilbert Spaces - изображение 67, and since, if z = a + ib = ℜ ( z ) + i ℑ( z ), then z + 2 a 2ℜ z we can rewrite 15 as 16 The laws presented in this - фото 68= 2 a = 2ℜ( z ), we can rewrite [ 1.5] as:

[1.6] The laws presented in this section have immediate consequences which will be - фото 69

The laws presented in this section have immediate consequences which will be highlighted in section 1.2.1.

1.2.1. The parallelogram law and the polarization formula

The parallelogram law in ℝ 2is shown in Figure 1.1. This law can be generalized on a vector space with an arbitrary inner product.

THEOREM 1.6 (Parallelogram law).– Let ( V , 〈, 〉) be an inner product space on Thus v w V Figure - фото 70. Thus, ∀ v, wV :

Figure 11 Parallelogram law in ℝ 2 The sum of the squares of the two - фото 71

Figure 11 Parallelogram law in ℝ 2 The sum of the squares of the two - фото 72

Figure 1.1. Parallelogram law in ℝ 2 : The sum of the squares of the two diagonal lines is equal to two times the sum of the squares of the edges v and w. For a color version of this figure, see www.iste.co.uk/provenzi/spaces.zip

PROOF.– A direct consequence of law [ 1.4] or law [ 1.5] taking ‖ v + w ‖ 2then ‖ vw ‖ 2.

As we have seen, an inner product induces a norm. The polarization formula can be used to “reverse” roles and write the inner product using the norm.

THEOREM 1.7 (Polarization formula).– Let ( V , 〈, 〉) be an inner product space on In this case v w V and PR - фото 73. In this case, ∀ v, wV :

and PROOF This law is a direct consequence of law 14 in the real case - фото 74

and:

PROOF This law is a direct consequence of law 14 in the real case For - фото 75

PROOF.– This law is a direct consequence of law [ 1.4], in the real case. For the complex case, w is replaced by iw in law [ 1.5], and by sesquilinearity, we obtain:

By direct calculation we can then verify that v w 2 v w 2 i v - фото 76

By direct calculation, we can then verify that ‖ v + w ‖ 2− ‖ vw ‖ 2+ iv + iw ‖ 2− iviw ‖ 2= 4〈 v, w 〉.

It may seem surprising that something as simple as the parallelogram law may be used to establish a necessary and sufficient condition to guarantee that a norm over a vector space will be induced by an inner product, that is, the norm is Hilbertian. This notion will be formalized in Chapter 4.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «From Euclidean to Hilbert Spaces»

Представляем Вашему вниманию похожие книги на «From Euclidean to Hilbert Spaces» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «From Euclidean to Hilbert Spaces»

Обсуждение, отзывы о книге «From Euclidean to Hilbert Spaces» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x