Generalized Ordinary Differential Equations in Abstract Spaces and Applications
Здесь есть возможность читать онлайн «Generalized Ordinary Differential Equations in Abstract Spaces and Applications» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: unrecognised, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.
- Название:Generalized Ordinary Differential Equations in Abstract Spaces and Applications
- Автор:
- Жанр:
- Год:неизвестен
- ISBN:нет данных
- Рейтинг книги:4 / 5. Голосов: 1
-
Избранное:Добавить в избранное
- Отзывы:
-
Ваша оценка:
Generalized Ordinary Differential Equations in Abstract Spaces and Applications: краткое содержание, описание и аннотация
Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Generalized Ordinary Differential Equations in Abstract Spaces and Applications»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.
Explore a unified view of differential equations through the use of the generalized ODE from leading academics in mathematics Generalized Ordinary Differential Equations in Abstract Spaces and Applications
Generalized Ordinary Differential Equations in Abstract Spaces and Applications
and Lemmas 1.97and 1.98. A proof of it can be found in [132, Theorem 10.3].
.
and, hence, of
are measurable ( Lemma 1.100), and all functions of
are absolutely integrable by Corollary 1.99.
always holds. However, when
is an infinite dimensional Banach space, then for sure
, as shown by the next result due to C. S. Hönig (personal communication by him to his students in 1990 at the University of São Paulo) and presented in [73].
denote the dimension of
. If
, then the Theorem of Dvoretsky–Rogers (see [60] and also [57]) implies there exists a sequence
in
which is summable but not absolutely summable. Thus, if we define a function
by
, for
, then
whenever the integral exists. However,
, since
be given by
. Since the Henstock integral contains its improper integrals (and the same applies to the Kurzweil integral), we have
. However,
because the sequence
is non-summable in
. By the Monotone Convergence Theorem for the Kurzweil–McShane integral (which follows the ideas of [71] with obvious adaptations),
. But
, since
is not bounded, where by
we denote the space of Riemann–McShane integrable functions from
to
.