Generalized Ordinary Differential Equations in Abstract Spaces and Applications
Здесь есть возможность читать онлайн «Generalized Ordinary Differential Equations in Abstract Spaces and Applications» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: unrecognised, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.
- Название:Generalized Ordinary Differential Equations in Abstract Spaces and Applications
- Автор:
- Жанр:
- Год:неизвестен
- ISBN:нет данных
- Рейтинг книги:4 / 5. Голосов: 1
-
Избранное:Добавить в избранное
- Отзывы:
-
Ваша оценка:
Generalized Ordinary Differential Equations in Abstract Spaces and Applications: краткое содержание, описание и аннотация
Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Generalized Ordinary Differential Equations in Abstract Spaces and Applications»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.
Explore a unified view of differential equations through the use of the generalized ODE from leading academics in mathematics Generalized Ordinary Differential Equations in Abstract Spaces and Applications
Generalized Ordinary Differential Equations in Abstract Spaces and Applications
and, to each subinterval
, with
, we associate a point
called “tag” of the subinterval
. We denote such semitagged division by
and, by
, we mean the set of all semitagged divisions of the interval
. But what is the difference between a semitagged division and a tagged division? Well, in a semitagged division
, it is not required that a tag
belongs to its associated subinterval
. In fact, neither the subintervals need to contain their corresponding tags. Nevertheless, likewise for tagged divisions, given a gauge
of
, in order for a semitagged division
to be
-fine, we need to require that
the space of all real-valued Kurzweil–McShane integrable functions
, that is,
is integrable in the sense of Kurzweil with the modification of McShane. Formally, we have the next definition which can be extended straightforwardly to Banach space-valued functions.
is Kurzweil–McShane integrable , and we write
if and only if there exists
such that for every
, there is a gauge
on
such that
is
-fine. We denote the Kurzweil–McShane integral of a function
by
.
as one can note by the next classical example.
be defined by
if
, and
, and consider
. Since
is Riemann improper integrable,
, because the Kurzweil–Henstock (or Perron) integral contains its improper integrals (see Theorem 2.9, [158], or [213]). However,
, since
is not absolutely integrable (see also [227]).