■ Messniveau: Die deskriptive Statistik setzt die Kenntnis der Messeinheiten der zu beschreibenden Daten voraus. Erst Messeinheiten und das zugrunde liegende Referenzsystem machen aus Zahlen erst Werte, die Zustände, Unterschiede oder auch Veränderungen korrekt zu beschreiben und vor allem auch zu interpretieren erlauben. Eine der ersten Fragen, die man sich bei der Beschreibung von Daten stellen sollte, ist: In welcher Einheit sind diese Zahlen und wie sind sie zu interpretieren? Messeinheiten werden in Abschnitt 2.2vorgestellt.
■ Erhebung: Die deskriptive Statistik kann auf Daten jeglicher Ziehungsart und jeden Umfangs angewandt werden; es empfiehlt sich jedoch die Klärung der Umstände ihrer Erhebung. „Erhebung“ umfasst drei thematisch verschiedene Aspekte, die aber oft zusammen auftreten, nämlich Art, Umfang und Design einer Erhebung: (1) Vor dem Erzeugen einer deskriptiven Statistik ist es notwendig zu prüfen, ob die Daten aus Vollerhebungen oder Stichproben stammen. (2) Stammen die Daten aus einer Vollerhebung, ist jegliche deskriptive Statistik gleichzeitig auch eine Beschreibung der Grundgesamtheit. Stammen die Daten aus einer Stichprobe, so sind u.a. das Verhältnis Ziehungs- und Erhebungsgesamtheit und die Abhängigkeit der statistischen Signifikanz vom ggf. nicht unerheblichen N zu beachten (vgl. z.B. Schendera, 2007, 395, 406). Bei der „Grauzone“, wenn sich die Größe der Stichprobe einer Vollerhebung, also einer Grundgesamtheit annähert, stehen Anwender letztlich vor der Wahl, ihre Daten als Grundgesamtheit oder Stichprobe zu definieren. Die Merkmale einer (Zufalls-)Stichprobe werden mit zunehmender Größe derjenigen der Grundgesamtheit immer ähnlicher (Gesetz der großen Zahl). (3) Mit dem Design einer Erhebung ist gefordert, dass eine Zufallsziehung vorliegt und dass im Falle ungleicher Auswahrscheinlichkeit der Fälle ihre Gewichte (idealerweise im selben Datensatz) vorliegen und ihre Ermittlung als Erhebungsdesign dokumentiert ist (vgl. 3.2und 7.1).
■ Gewichte: Üblicherweise wird jeder Wert in der deskriptiven Statistik mit dem Gewicht 1 in die Analyse einbezogen. Ein Gewicht von 1 bedeutet, dass dieser Wert nur einen Fall repräsentiert, also nur für sich selbst steht. Je nach Analysekontext ist es sehr gut möglich, dass ein Fall jedoch nicht nur für sich selbst alleine steht, sondern für mehrere andere. In diesem Fall wird diesem Fall explizit ein anderes Gewicht zugewiesen, z.B. 10. Ein Wert mit dem Gewicht 10 repräsentiert daher zehn Fälle, und nicht nur einen. Gewichte werden aus diversen Gründen vergeben, z.B. um Auswahlwahrscheinlichkeiten (z.B. Oversampling) anzugleichen. Eine der ersten Fragen, die man sich bei der Beschreibung von Daten stellen sollte, ist: Sind die Daten gewichtet oder nicht? Falls die Daten gewichtet sind, wo sind die Gewichte dokumentiert und abgelegt? Zwei Abschnitte mit zwei völlig unterschiedlichen, aber einander ergänzenden Schwerpunkten führen in die deskriptive Statistik unter Einbeziehen von Gewichten ein. Abschnitt 3.2richtet zunächst die Aufmerksamkeit auf Designstrukturen, Auswahlwahrscheinlichkeiten und Zufallsziehung. Abschnitt 7.1 befasst sich genauer mit der Herleitung von Gewichten und veranschaulicht das Berechnen deskriptiver Maße unter Zuhilfenahme von Gewichten.
1.2 Was ist deskriptive Statistik nicht?
Die deskriptive Statistik wird, eventuell abgesehen von der zugrunde liegenden Mathematik oder Statistik, überwiegend als recht unproblematisch vermittelt. Die Erfahrung zeigt, dass in der praktischen Anwendung der deskriptiven Statistik oft etwas großzügig (meist unbedacht) mit dem Sinn, aber vor allem mit den Grenzen der deskriptiven Statistik umgegangen wird. Was sind erfahrungsgemäß häufige Fallstricke bei der Arbeit mit der deskriptiven Statistik?
■ Kein Plan: Keinen Plan zu haben, kann manchmal etwas Befreiendes an sich haben; bei der Erstellung einer deskriptiven Statistik könnte dies u.U. zu heiklen Situationen führen. Nach allgemeiner Erfahrung ist die deskriptive Statistik ein unterschätztes Instrumentarium an Methoden, Kriterien und Voraussetzungen. Keinen Plan zu haben, meint weniger die Anforderung einer deskriptiven Statistik „auf Knopfdruck“, sondern, dass dabei wesentliche Hintergrundinformationen (Metadaten) über die Daten nicht bekannt sind oder berücksichtigt werden. Hilfreiche Stichworte für einen Plan können z.B. sein: Vollerhebungen vs. Stichproben; falls Stichproben: Ziehungs-/Erhebungsgesamtheit (inkl. Ausfälle), Ein-/Ausschlusskriterien, Erhebungsdesign (Strukturen, Ziehungsplan, Gewichte, usw.), Variablen (Definitionen, Messniveaus, Einheiten, Maße, usw.), Analysepläne (Designstrukturen, Klassifikationsvariablen), (Grad der) Datenqualität oder auch, wie Zahlen im Text dargestellt werden sollen. Abschnitt 7.2 stellt diverse Vorschläge für das Schreiben von „zahlenlastigen“ Texten zusammen.
■ Verwechslung: Explorative Analyse, konfirmatorische Analyse und Inferenzstatistik haben andere Ziele wie die deskriptive Statistik – die deskriptive Statistik reduziert und beschreibt die Daten, so wie sie sind . Mit einem Quentchen Salz könnte man vielleicht sagen: Die deskriptive Statistik ist daten-geleitet, die konfirmatorische Analyse ist modell-geleitet, die Inferenzstatistik ist hypothesen-geleitet und die explorative Analyse ist neugierdegeleitet: Die explorative Analyse sucht nach neuen Strukturen und Zusammenhängen in den Daten (meist auch mit den Methoden der deskriptiven Statistik!). Die konfirmatorische Analyse prüft, ob die Verteilung der Daten vorgegebenen Modellen folgt (Modelltests). Die Inferenzstatistik schließt über Hypothesentests von Stichproben auf Grundgesamtheiten .
■ Sicherheit: Die deskriptive Statistik beschreibt die Daten, so wie sie sind. Nicht weniger, aber auch nicht mehr. Dies bedeutet auch, dass die deskriptive Statistik keine „Sicherheit“ von Aussagen einzustellen bzw. zu errechnen erlaubt, wie z.B. Alpha, p- Werte, „Fehler“ usw. Auf der einen Seite braucht es diese Sicherheit auch gar nicht, weil keine Aussagen über Grundgesamtheiten getroffen werden. Auf der anderen Seite hilft eine kluge Kombination von Lagemit Streumaßen abzusichern, dass sie eine Verteilung von Daten ohne substantiellen Informationsverlust repräsentieren.
■ Datenqualität: Die deskriptive Statistik setzt Datenqualität voraus, z.B. vollständige und geprüfte Daten. Nur weil eine deskriptive Statistik „auf Knopfdruck“ abgerufen werden kann, bedeutet dies nicht automatisch, dass die Daten auch in Ordnung sind. Das Resultat ist höchstens eine vorläufige deskriptive Statistik. Keine deskriptive Statistik ohne zuvor geprüfte Datenqualität. Dieses Thema ist so wichtig, das ihm eine Einführung ( Abschnitt 3.3) und eine Vertiefung (Kapitel 6) gewidmet sind.
Erfahrungsgemäß ist die deskriptive Statistik eine erste Belohnung für die harte Arbeit des Erhebens, Eingebens, Korrigierens und oft auch häufig genug komplizierten Transformierens von Daten. In der IT werden diese oft auch als ETL-Prozesse bzw. -Strecken abgekürzt („Extract“, „Transform“, „Load“). Entsprechend groß ist die Begeisterung, erste Einblicke in den (wünschenswerten) Erfolg der ganzen Unternehmung haben zu können. Wie die Erfahrung zeigt, treten an dieser Stelle gleich mehrere Fehler bei der Interpretation der deskriptiven Statistik auf. Um sie besser auseinanderhalten zu können, werden sie separat dargestellt; allesamt könnte man sie als Varianten des Über- bzw. Fehlinterpretierens der deskriptiven Statistik zusammenfassen:
■ Projektionsfläche(Messgegenstand): Eines der häufigsten, größten und unerklärlicherweise immer noch stiefmütterlich behandelten „Fettnäpfchen“ ist, den in der deskriptiven Statistik wiedergegebenen Daten Bedeutungen zu unterstellen, die gar nicht Gegenstand der Messung waren. Oft werden z.B. sozio demographische Variablen (z.B. Alter, Geschlecht, Einkommen) erhoben, und dann in der Gesamtschau als z.B. psycho logische Merkmale (z.B. „extrovertierter Konsumhedonist“) überinterpretiert (vgl. Schendera, 2010, 20–21). Diese verkaufsfördernde bzw. arbeitserleichternde, jedoch an (Selbst-)Täuschung grenzende Unsitte ist leider nicht selten anzutreffen und keinesfalls auf eine bestimmte Disziplin beschränkt. Beispiele sind allgegenwärtig. In anderen Forschungsfeldern kann man es durchaus erleben, dass deskriptive Statistiken zu Einstellungen zum Lernen erhoben, aber als Kognitionen interpretiert werden (was inhaltlich etwas völlig anderes ist).
Читать дальше