Christian FG Schendera - Deskriptive Statistik verstehen

Здесь есть возможность читать онлайн «Christian FG Schendera - Deskriptive Statistik verstehen» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: unrecognised, на немецком языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Deskriptive Statistik verstehen: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Deskriptive Statistik verstehen»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Mit der Deskriptiven Statistik ist es wie mit dem Fußball – mit Einstellung, Fleiß und Training gelangt man zum Ziel: Deskriptive Statistik als Kompetenz.
Dieses Taschenbuch stellt dazu die Grundlagen und Spielregeln sowie die wichtigsten Maße, Tabellen und Visualisierungen vor. Weitere Themen sind die Datenqualität (u. a. der Umgang mit fehlenden Werten), die Sampling-Theorie (Designstrukturen und Ziehungsarten), das Rechnen mit Gewichten oder auch das Schreiben von Zahlen in Texten.
Zahlreiche Beispiele aus der lehrreichen Welt des Fußballs helfen beim schnellen Verständnis. Kompakte Einführungen in IBM SPSS Statistics und den Enterprise Guide von SAS runden die praktische Anwendung ab.

Deskriptive Statistik verstehen — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Deskriptive Statistik verstehen», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать
daten-nahe , und beschränkt sich daher auf Information in einer Datentabelle. Kapitel 3 beschreibt dagegen den Kontext von Daten, also Information, die man nicht notwendigerweise durch das Analysieren einer Datentabelle erfährt.

Kapitel 3stellt grundlegende Fragen zusammen, die vor der Durchführung einer deskriptiven Statistik geklärt sein sollten. Den Anfang macht Abschnitt 3.1, der fragt: Wie wurden die Daten erhoben? und stellt damit z.B. Fragen nach dem Messvorgang. Abschnitt 3.2stellt Fragen nach verborgenen Strukturen, wie z.B. Ziehung und Auswahlwahrscheinlichkeit. Anhand von Entdeckungsreisenden in Sachen Fußball wird erläutert, was eine naive von einer systematischen Ziehung und Gewichtung von Daten unterscheidet. Aber selbst wenn diese Frage zufriedenstellend geklärt ist, ist damit noch nicht selbstverständlich, dass eine deskriptive Statistik erstellt werden kann. Abschnitt 3.3fragt nach der Fitness der Daten (Darf eine deskriptive Statistik überhaupt erstellt werden?) und stellt mehrere mögliche Spielverderber vor. Abschnitt 3.4 ist eine Art Exkurs („Auszeit“) und stellt Strukturen von Datentabellen vor, welche technische Eigenschaften (Attribute) sie haben und wie sie u.a. von Software verarbeitet werden. Abschnitt 3.5 widmet sich abschließend der womöglich spannendsten Frage: Was kann ich an meinen Daten beschreiben? Die Antwort darauf muss lauten: „Es kommt darauf an…“

Kapitel 4beschreibt ( endlich! ) die Reise ins Herz der deskriptiven Statistik. Abschnitt 4.1 erläutert Maße für das Beschreiben von Mengen und Anteilen: Summe (∑), Anzahl ( N, n ) und Häufigkeit ( h, f, H, F ). Abschnitt 4.2 erläutert die gebräuchlichsten Maße für das Beschreiben des Zentrums einer Verteilung (Lagemaße): Modus (D), Median (Z), Mittelwert ( x ). Zur Illustration des Effekts von Missings sind die Beispiele für Lagemaße ohne und mit Missings berechnet. Abschnitt 4.3 erläutert die gebräuchlichsten Maße für das Beschreiben der Abweichung vom Zentrum einer Verteilung (Streuungsmaße): Spannweite R, Interquartilsabstand, Varianz, Standardabweichung, und Variationskoeffizient. Auch die Beispiele für Streuungsmaße sind ohne und mit Missings berechnet. Abschnitt 4.4 erläutert die gebräuchlichsten Maße für das Beschreiben der Abweichung von der Form einer Normalverteilung (Formmaße): Schiefe und Exzess. Abschnitt 4.5 erläutert das Beschreiben von Grenzen und Bereichen anhand von Quantilen (u.a. Median, Quartile, Dezentile) als eine Art Kombination aus Lage- und Streumaß. Ab schnitt 4.6 erläutert das Beschreiben von Treffern, z.B. bei Wetten mit zwei Ausgängen („hopp oder topp“). Für einen „Wettkönig“ werden für Wetten mit vier Ausgängen Sensitivität, Spezifität, ROC/AUC sowie Gewinn-Verlust-Matrix ermittelt. Abschnitt 4.7 stellt drei Möglichkeiten für das Beschreiben von Zeit vor: das geometrische Mittel (4.7.1), die Regressionsanalyse (4.7.2) sowie die Methode der exponentiellen Glättung als Trend bzw. Prognose (4.7.3). Bevor es an die praktische deskriptive Statistik geht, veranschaulicht Abschnitt 4.8, dass wer sich in der deskriptiven Statistik auskennt, auch andere als die „üblichen“ Visualisierungen „lesen“ kann. Deskriptive Statistik eben als Kompetenz. Abschnitt 4.8 stellt das Beschreiben von Prozessen vor, z.B. Funnel Charts (Trichterdiagramme usw.) für z.B. Pipelines. Abschnitt 4.9 verschafft einen schnellen Überblick, wo die meisten dieser Maße im SAS Enterprise Guide (4.9.1) und in IBM SPSS Statistics zu finden sind (4.9.2).

Kapitel 5beschreibt die Grundlagen der Struktur und Interpretation von Tabellen und Grafiken zur Visualisierung von Daten. Abschnitt 5.1 beginnt beim Grundsätzlichen und erläutert die Konstruktion von 0- bis n×klassierten Tabellen; darunter Ausrichtung, Verschachtelung, die Vor- und Nachteile von Tabellen und wie mit SAS und SPSS 0- bis n×klassierte Tabellen erzeugt werden können. Abschließend wird eine einfache 0×(gesprochen: „nullfach“) klassierte Tabelle vorgestellt. Eine solche Tabelle ist nicht nach einer Klassifikationsvariablen strukturiert. Abschnitt 5.2 beginnt mit den Grundlagen einer 1×klassierten Tabelle und geht dann zu spezielleren Themen über. Anhand einer Klassifikationsvariablen auf Nominalniveau werden die Grundlagen 1×klassierter Tabellen erläutert (5.2.1); an einer Klassifikationsvariablen auf Ordinalniveau werden Besonderheiten wie z.B. Ranginformation (5.2.2) oder Missings (5.2.3) vertieft. Unterabschnitt 5.2.4 erläutert eine 1×klassierte Tabelle für Variablen auf Intervallniveau , z.B. eine Mittelwerttabelle. Abschnitt 5.3 geht auf 2×klassierte Tabellen über, darin definieren Zwei Kategorialvariablen eine Tabelle. Trotz komplexerer Tabellenstrukturen kommen mathematisch gesehen dieselben Rechenoperationen zum Einsatz. 5.3.1 beschreibt detailliert die Anforderung und Interpretation einer Kreuztabelle, u.a. Zellhäufigkeit und -prozente sowie Spalten- und Zeilenhäufigkeit und -prozente. Unterabschnitt 5.3.2 erläutert eine Tabelle, die wie eine Kreuztabelle strukturiert ist, jedoch die Werte einer dritten Variablen auf Intervallskalenniveau als Mittelwerte wiedergibt. Abschnitt 5.4 behandelt die Kommunikation von Werten und Daten mittels Diagrammen. Die Unterabschnitte sind anwendungsorientiert auf bestimmte Aussagen ausgerichtet: Wiedergabe von Datenpunkten (einzelne Werten einer Variablen, z.B. univariates Dot-Plot; vgl. 5.4.2), Wiedergabe von zusammengefassten Werten einer Variablen (vgl. 5.4.3, z.B. Balkendiagramm; ggf. gruppiert nach einer zweiten Variablen), Wiedergabe von bivariaten Messwertpaaren (z.B. eines Streudiagramms; vgl. 5.4.4) sowie Aggregierung und Gruppierung zweier Variablen und andere Fälle (z.B. Butterfly-Plot, vgl. 5.4.5). Allem voran geht ein Crashkurs (Übersicht) mit Tipps (Dos), was man tun sollte und was besser nicht (Don’ts; vgl. 5.4.1).

Kapitel 6vertieft das Thema der Datenqualität. Letztlich sind Datenqualität und deskriptive Statistik ein Dream-Team . Nur mit geprüfter Datenqualität macht eine deskriptive Statistik Sinn. Für jeden „Spielverderber“ werden Sie seine besondere Bedeutung (um nicht zu sagen: Gefahr ) und meist mehrere unkomplizierte Maßnahmen zur Prüfung kennenlernen. Der Umgang mit einem gefundenen Fehler hängt dabei von Art und Ursache des Fehlers ab. Die Systematik des Vorgehens orientiert sich an Schendera (2007). Abschnitt 6.1 beginnt, wenig überraschend, mit der Vollständigkeit. Abschnitt 6.2 geht zur Einheitlichkeit über. Abschnitt 6.3 behandelt doppelte (Doubletten) und Abschnitt 6.4 fehlende Werte (Missings). Abschnitt 6.5 stellt das Überprüfen auf Ausreißer vor; genau betrachtet wird bei Ausreißern auch die Gültigkeit eines Erwartungshorizonts geprüft. All dieses Prüfen von Datenqualität strebt (zunächst) das Ziel der Plausibilität an. Abschnitt 6.6 schließt mit Maßnahmen zur Prüfung der Plausibilität (Daten sollten unbedingt auf Plausibilität geprüft werden!). Abschnitt 6.7 schließt mit konkreten Trainingseinheiten zur Prüfung von Datenqualität.

Kapitel 7schließt die Einführung in die deskriptive Statistik mit zwei spezielleren Anwendungen des Umgangs mit deskriptiven Statistiken: dem praktischen Umgang mit Gewichten (vgl. 7.1) und dem Umgang mit Zahlen beim Abfassen von Texten (vgl. 7.2). Abschnitt 7.1 führt in das Erstellen einer deskriptiven Statistik unter Einbeziehung von Gewichten ein. Gewichte haben einen großen Einfluss bei der Ermittlung deskriptiver Statistiken. Unterabschnitt 7.1.1 wird zuerst den Effekt von Gewichten an Beispielen aus dem Fußball, der Politik, und der Wirtschaft veranschaulichen. Gewichtete Ergebnisse sind nur mit Kenntnis der dahinterstehenden Annahmen und Interessen nachvollziehbar. Unterabschnitt 7.1.2 wird den Effekt von Gewichten an zahlreichen Streu- und Lagemaßen veranschaulichen. Unterabschnitt 7.1.3 wird als „Hintergrundbericht“ die Frage klären: Was sind eigentlich Gewichte? Dabei wird auf die Funktion und Varianten von Gewichten eingegangen, von selbstgewichteten Daten über Designgewichte (disproportionale Ansätze) bis hin zur Poststratifizierung. Abschnitt 7.2 führt in das Verfassen einer deskriptiven Statistik als Text ein, und stellt u.a. Empfehlungen zusammen, wann eine Zahl als Ziffer („Zahl“) und wann als Zahlwort („Text“) geschrieben werden sollte. Unterabschnitt 7.2.1 stellt den Umgang mit allgemein gebräuchlichen Zahlen vor. Unterabschnitt 7.2.2 behandelt den Umgang mit präzisen Maßen bzw. Messungen. Unterabschnitt 7.2.3 schließt mit Symbolen und Statistiken.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Deskriptive Statistik verstehen»

Представляем Вашему вниманию похожие книги на «Deskriptive Statistik verstehen» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Deskriptive Statistik verstehen»

Обсуждение, отзывы о книге «Deskriptive Statistik verstehen» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x