Christian FG Schendera - Deskriptive Statistik verstehen

Здесь есть возможность читать онлайн «Christian FG Schendera - Deskriptive Statistik verstehen» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: unrecognised, на немецком языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Deskriptive Statistik verstehen: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Deskriptive Statistik verstehen»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Mit der Deskriptiven Statistik ist es wie mit dem Fußball – mit Einstellung, Fleiß und Training gelangt man zum Ziel: Deskriptive Statistik als Kompetenz.
Dieses Taschenbuch stellt dazu die Grundlagen und Spielregeln sowie die wichtigsten Maße, Tabellen und Visualisierungen vor. Weitere Themen sind die Datenqualität (u. a. der Umgang mit fehlenden Werten), die Sampling-Theorie (Designstrukturen und Ziehungsarten), das Rechnen mit Gewichten oder auch das Schreiben von Zahlen in Texten.
Zahlreiche Beispiele aus der lehrreichen Welt des Fußballs helfen beim schnellen Verständnis. Kompakte Einführungen in IBM SPSS Statistics und den Enterprise Guide von SAS runden die praktische Anwendung ab.

Deskriptive Statistik verstehen — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Deskriptive Statistik verstehen», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Beispiele: Merkmal: Fußballverein, Werte: BVB, FCB, HSV, S04, usw.; Merkmal: Rückennummer im Fußball, Werte: 1, 7, 13 usw.; Merkmal: Trikotfarbe, Werte: Schwarzrot, schwarzgelb, blauweiß usw.

Transformation: eindeutige 1:1-Zuordnung („eineindeutig“), Umbenennung

Mögliche Maße: Modus: Der Modus (Lagemaß) gibt die Häufigkeiten in der jew. Klasse, und auch ihre Lage an. Bei vielen gleich oder ähnlich besetzten Klassen ist der Modus oft wenig hilfreich. Mengen, Anzahl, Häufigkeiten, Prozente (absolut, relativ). Für Nominaldaten gibt es kein Streumaß.

Zulässige Rechenoperation: Zählung (N/n, h/H, f/F; Anzahl, Häufigkeit (absolut/relativ) bzw. Prozentanteile.

Welche Spalten aus der Bundesligatabelle enthalten Daten auf Nominalniveau? Das Kriterium, das zu erfüllen ist, lautet: Kategorien, die verschieden sind (sich aber nicht in eine Rangreihe bringen lassen). Einfach ist dies bei der Spalte „Verein“. Die Spalte „Verein“ besitzt das Nominalniveau. Es ist die Aussage möglich: Alle 16 Vereine haben unterschiedliche Namen. Wie sieht es mit der Spalte „Platz“ aus? Hier lässt sich die Aussage treffen: Alle 16 Vereine befinden sich auf unterschiedlichen Plätzen. Die Spalte „Platz“ besitzt (mindestens!) das Nominalniveau (dass Daten das Nominalniveau besitzen, schließt nicht aus, dass sie noch andere Skalenniveaus vorweisen können). Die Spalte „Spiele“ ist ebenfalls auf dem Nominalniveau (mindestens!); es ist die Aussage möglich: Alle 16 Vereine besitzen dieselbe Anzahl an Spielen. Die Spalte „Tore“ ist ebenfalls auf dem Nominalniveau, weil sie die Aussage erlaubt, die Torverhältnisse aller 16 Vereine sind verschieden. Wie steht es z.B. mit den Spalten „S“, „U“, und „N“? Jede der drei Spalten lässt die Aussage zu, dass die sechzehn Vereine teils dieselbe, teils eine unterschiedliche Anzahl an Siegen, Unentschieden oder Niederlagen aufweisen. Die Spalten „S“, „U“ und „N“ sind jeweils (mindestens!) auf dem Nominalniveau. Um es kurz zu machen: Jede Datenspalte besitzt auf jeden Fall das Nominalniveau. Spannend wird es an der Stelle: Welches andere Messniveau besitzt eine Datenspalte noch?

► Exkurs Mathematik mit Rückennummern: Sinn und Unsinn

Bei nominalskalierten Daten werden für die Kategorien eines Merkmals oft Namen, Abkürzungen oder Zahlen vergeben. Ein oben genanntes Beispiel war z.B. das der Fußballvereine. Fußballvereine können z.B. ganz ausgeschrieben angegeben werden, z.B. als „Hamburger SV“, als „HSV“ (Textkode) oder auch als Zahlenkode, z.B. 12 (hier willkürlich gewählt). Ein analoges Beispiel wären die üblicherweise maximal zweistelligen Rückennummern von u.a. auch Fußballspielern. Die Rückennummern sind auf den Trikots angebracht, damit sie von Schiedsrichtern, Zuschauern und Spielern besser auseinandergehalten werden können.

Früher war eine Rückennummer an eine bestimmte Position in der Mannschaft gebunden. Ein klassisches Beispiel ist der Torhüter, der typischerweise die Nummer 1 trägt. Gegenwärtig ist eine Rückennummer frei wählbar, sofern sie nicht bereits vergeben oder aus anderen Gründen nicht vergeben werden kann. Beim 1. FC Köln wird z.B. Lukas Podolskis Rückennummer 10 nicht mehr vergeben (es sei denn, er kehrt eines Tages zurück); bei Arsenal trägt Podolski derzeit die Nummer 9. Der BVB vergibt derzeit nicht die Rückennummer 17, die BVB-Legende Leonardo Dedé getragen hatte. Bei Hannover 96 wird die 1 zum Gedenken an Robert Enke nicht mehr vergeben. Bei vielen Clubs, z.B. dem 1. FC Kaiserslautern, ist das Trikot mit der Rückennummer 12 für die Fans des Vereins reserviert. Die einmal gewählte Nummer ist immer dem gleichen Spieler zugeordnet, solange er im Verein spielt. Spieler, die in einen anderen Verein wechseln, erhalten dort eher selten dieselbe, sondern i. Allg. eher eine andere Rückennummer. Kommen sie jedoch in ihren Verein zurück, erhalten sie oft wieder die gleiche Nummer wie vor ihrem Weggang. Ein aktuelles Beispiel ist Claudio Pizarro vom FC Bayern, der nach seiner Rückkehr von Werder Bremen wieder die Nummer 14 wie vor seinem Wechsel nach Bremen trägt.

Rückennummern von außergewöhnlichen Spielern werden z.T. gesperrt und nicht mehr vergeben. Der argentinische Verband stellte z.B. bei der FIFA erfolgreich den Antrag, die Nummer 10 zur Erinnerung an ihren Star Diego Maradona nicht mehr vergeben zu dürfen.

Rückennummern sind typische Nominaldaten: Verschiedene Nummern bedeuten verschiedene Spieler. Damit Spieler auseinandergehalten werden können, werden in einer Mannschaft weder zweimal dieselben Rückennummern vergeben, noch darf ein Spieler mit mehreren Rückennummern auflaufen. Die Rückennummern bei Bayern München in der Saison 2011/2012 waren z.B. folgendermaßen vergeben.

Tabelle: Rückennummern beim Bayern München

Tor: 1Manuel Neuer, 22Tom Starke, 24Maximilian Riedmüller, 32Lukas Raeder

Abwehr: 4Dante, 5Daniel van Buyten, 13Rafinha, 17Jérôme Boateng, 21Philipp Lahm, 26Diego Contento, 28Holger Badstuber.

Mittelfeld: 7Franck Ribéry, 8Javier Martinez, 10Arjen Robben, 11Xherdan Shaqiri, 23Mitchell Weiser, 27David Alaba, 30Luiz Gustavo, 31Bastian Schweinsteiger, 36Emre Can, 39Toni Kroos, 44Anatoli Timoschtschuk

Angriff: 9Mario Mandzukic, 14Claudio Pizarro, 20Patrick Weihrauch, 25Thomas Müller, 33Mario Gomez

Keine Rückennummer ist zweimal vergeben und kein Spieler besitzt mehrere Rückennummern. Nominalskalierte Daten werden auch als qualitative Daten bezeichnet, weil sich die Werte nur in einer Qualität (z.B. „rot“) unterscheiden können. Keine Ausprägung nominal gestufter Daten kann als größer, höher oder kleiner als eine andere bezeichnet werden. Nominale Kodes, wie z.B. Rückennummern, drücken damit nur den Unterschied in einer Qualität (dem Spielernamen) aus, aber keine quantitativen Unterschiede zwischen ihnen.

Die einzelnen Qualitäten (Abstufungen) in nominalskalierten Daten sind gleich relevant. Die Abstufungen nominal skalierter Daten brauchen damit auch nicht „lückenlos“ sein. In den Rückennummern der Saison 2011/2012 „fehlen“ u.a. die Nummern 2, 6oder 12. Das darf so sein. Die einzige Anforderung an nominalskalierte Daten ist, dass sie als verschieden oder gleich zu identifizieren erlauben; sie brauchen nicht die Anforderung „lückenlos“ erfüllen. Die einzige zulässige mathematische Operation ist das Zählen, wie häufig die jeweilige Qualität in den Daten vorkommt. Bei Rückennummern wäre das Ergebnis für jeden Bayern-Spieler dasselbe, nämlich f = 1. Ginge man nach den Vornamen, wäre das Ergebnis für „Mario“ f =2. Der Modus liegt bei „Mario“ (Mandzukic bzw. Gomez), alle anderen Vornamen haben den Wert f = 1. Einen Mittelwert aus Trikotnummern (z.B. des 1. FC Bayern München) zu berechnen, wäre zwar mathematisch möglich, jedoch ziemlich sinnfrei, weil es dem Berechnen eines Durchschnittswerts aus Spielernamen entspräche.

Exkurs ◄

2.3.2 Ordinalskala

Wie lässt sich am besten in einen Abschnitt zum Ordinalniveau einführen? Man macht es spannend! Wie lautete die zentrale Aussage zum Nominalniveau? Jede Datenspalte besitzt auf jeden Fall das Nominalniveau. Spannend ist also an dieser Stelle: Welches andere Messniveau besitzt eine Datenspalte noch? Der nächstmögliche „Kandidat“ wäre das Ordinalniveau. Ist das wirklich so einfach…?

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Deskriptive Statistik verstehen»

Представляем Вашему вниманию похожие книги на «Deskriptive Statistik verstehen» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Deskriptive Statistik verstehen»

Обсуждение, отзывы о книге «Deskriptive Statistik verstehen» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x