Christian FG Schendera - Deskriptive Statistik verstehen

Здесь есть возможность читать онлайн «Christian FG Schendera - Deskriptive Statistik verstehen» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: unrecognised, на немецком языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Deskriptive Statistik verstehen: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Deskriptive Statistik verstehen»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Mit der Deskriptiven Statistik ist es wie mit dem Fußball – mit Einstellung, Fleiß und Training gelangt man zum Ziel: Deskriptive Statistik als Kompetenz.
Dieses Taschenbuch stellt dazu die Grundlagen und Spielregeln sowie die wichtigsten Maße, Tabellen und Visualisierungen vor. Weitere Themen sind die Datenqualität (u. a. der Umgang mit fehlenden Werten), die Sampling-Theorie (Designstrukturen und Ziehungsarten), das Rechnen mit Gewichten oder auch das Schreiben von Zahlen in Texten.
Zahlreiche Beispiele aus der lehrreichen Welt des Fußballs helfen beim schnellen Verständnis. Kompakte Einführungen in IBM SPSS Statistics und den Enterprise Guide von SAS runden die praktische Anwendung ab.

Deskriptive Statistik verstehen — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Deskriptive Statistik verstehen», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Kodierungen I: Numerisch:Für die Kodierung der Ausprägungen von Ratingskalen, z.B. Schulnoten („sehr gut“, „gut“, usw.), Zustimmung („sehr“, „überwiegend“, usw.) oder Zutreffen („trifft sehr zu“, „trifft zu“ usw.), werden üblicherweise Zahlen vergeben (meist 1 bis 4 bzw. 6, je nach Rangskala). Das Problem der zugewiesenen numerischen Skala ist, dass sie meist über regelmäßige Abstände verfügt. Das gilt auch für scheinbar alternative Kodierungen, wie z.B. 2, 4, 6 usw., 10, 20, 30 usw. oder auch 11, 12, 13 usw. In allen Fällen wurde die original „qualitative“ Ordinalskala unzulässigerweise um die Information der Äquidistanz angereichert. Das Problem ist: Diese Kodierungen suggerieren, dass die Abstände zwischen den quantitativen Stufen (1, 2, 3, usw.) exakt gleich sind, obwohl sie es faktisch nicht sind („sehr gut“, „gut“, „befriedigend“ usw.). Die Methodenforschung bemüht sich zwar um den Nachweis, dass sich Skalen mit wenigen qualitativen Rängen in etwa den Abständen zwischen den quantitativen Stufen annähern . Als eine echte Lösung des Problems von Ordinalskalen erschließt sich dies jedoch nicht. Unkonventionellere Kodierungen (wie z.B. 1, 8, 13, 27) zu wählen, ist ebenfalls keine befriedigende Lösung, weil die jeweils gewählte quantitative Kodierung außerdem einen Einfluss auf die erzielten Statistiken haben kann. Wenn Mittelwerte unbedingt mit Ordinaldaten berechnet werden müssen (was z.B. oft Auswertungsmanuale psychometrischer Skalen verlangen), so sollte zumindest der Effekt verschiedener Kodierungen überprüft und ausgeschlossen werden.

Kodierungen II: String / Text:Ränge können auch direkt, alphanumerisch, als Text an die Software übergeben werden. In diesem Falle sollten Text-Rangfolgen auf mögliche Sortierfehler geprüft werden. Korrekt und konsistent wäre z.B. eine Text-Rangfolge wie z.B. „ klein“, „ mittel“ oder „ riesig“ (konsistente Rangreihe: k < m < r). Inkorrekt, weil inkonsistent, wäre z.B. eine Text-Rangfolge wie z.B. „schwach“, „ mittel“ oder „ stark“ (inkonsistente Rangreihe: s > m < s).

Exkurs ◄

картинка 13Tipp!

Vermeiden Sie alphanumerische Kodierungen, z.B. von Bewertungen („schwach“, „mittel“, „stark“ oder „high“, „average“ und „low“) oder z.B. von Monaten (z.B. „Jan“, „Feb“, „Mar“ usw.) oder Jahreszeiten („Frühling“, „Sommer“ usw.). Alphanumerisch sortiert würde z.B. „mittel“ zwischen „schwach“ und „stark“, „high“ zwischen „average“ und „low“, „Apr“ vor „Feb“ oder auch der „Herbst“ vor „Sommer“ usw. sortiert werden.

Ordinalskalierte Variablen erlauben im Gegensatz zu nominal skalierten Variablen schon Aussagen i.S.v. größer oder kleiner, aber das um wie viel besser, größer, stärker oder intensiver kann erst ab dem Intervallskalenniveau numerisch, also quantitativ, ausgedrückt wiedergegeben werden.

Ordinaldaten sind heikel für die deskriptive Statistik (und nicht nur dort). Die Empfehlung ist, sofern möglich, Daten für u.a. Differenz- oder Mittelwerte nur ab Intervallskalenniveau zu erheben (damit wäre eine Mittelwertbildung zulässig).

2.3.3 Intervallskala

Während die Abstände der einzelnen Ränge also bei Ordinalskalen noch nicht gleich sind, unterscheidet sich die Intervallskala darin, dass die Ränge auf ihrer Skala gleiche Abstände aufweisen (Äquidistanz). Gleiche Abstände bedeuten, dass ab nun Differenzen gemessen werden können. Daher kann erst ab dem Intervallskalenniveau das um wie viel besser, größer, stärker oder intensiver usw. in Zahlen ausgedrückt werden.

Definition: Messungen auf einer Intervallskala liegen dann vor, wenn neben Gleichheit/Verschiedenheit (Eigenschaft der Nominalskala), größer/kleiner-Relationen (Eigenschaft der Ordinalskala) auch die Größe von Unterschieden feststellbar ist.

Mögliche Aussagen: Äquidistanz: Die Differenzen von zwei (oder mehr) einzelner (oder auch Gruppen von) Merkmalsträgern sind gleich (oder auch ungleich).

Beispiele: Merkmal: Temperatur. Ein Unterschied zwischen 4 und 8 Grad Celsius ist gleich groß wie zwischen 20 und 24 °C; Merkmal: Uhrzeiten (Zeitmessungen): Die Differenz zwischen 20:15 und 21:45 ist genauso groß wie zwischen 18:00 und 19:30; Merkmal: Bundesligapunkte: Der Unterschied zwischen 81 und 73 Punkten ist genau so groß wie zwischen 48 und 40.

Transformation: linear.

Mögliche Maße: Lagemaße: Mittelwert, Minimum, Maximum, Median (auch berechnet), Quantile, Modus. Streumaße: Standardabweichung, Varianz , Spannweite R, Interquartilsabstand , Quantildifferenzen.

Zulässige Rechenoperation: numerische Differenzen, Mittelwert; f (Anzahl, frequency) bzw. Prozentanteile.

Welche Spalten aus der Bundesligatabelle enthalten Daten auf Intervallniveau? Das Kriterium, das zu erfüllen ist, lautet: Kategorien, die verschieden sind, sich in eine Rangreihe bringen lassen und deren Abstände genau gemessen werden können. Tricky ist es bei der Spalte „Platz“. Einerseits ließe sich argumentieren: Der Abstand zwischen den Rangwerten 1 und 3 erscheint genauso groß wie zwischen den Rangwerten 5 und 7 bzw. größer als zwischen den Rangwerten 5 und 6. Damit besäße die Spalte „Platz“ also auch ein Intervallniveau. Andererseits wäre es nicht weniger plausibel zu argumentieren: Die Rangwerte sind in Wirklichkeit nur „Kodes“, deren Abstände in Wirklichkeit auch unterschiedliche Punktzahlen aufweisen können (vgl. „Pkt“). Der Abstand zwischen den Plätzen 1 und 2 (8 Punkte) ist größer als zwischen den Plätzen 4 und 5 (4 Punkte) bzw. größer als zwischen den Plätzen 5 und 6 (1 Punkt). Damit besäße die Spalte „Platz“ weiterhin „nur“ ein Ordinalniveau. Der Unterschied zwischen Ordinalniveau (auf der Basis von Kodes) und Intervallniveau (auf der Basis von Werten) lässt sich über den Rückgriff auf Informationen „außerhalb“ der betreffenden Ordinaldaten differenzieren. Die Spalte „Platz“ hat damit zwei Gesichter: Die numerischen Kodes haben (selbstverständlich) Intervallniveau. Die Ränge, die diese Kodes repräsentieren, weisen jedoch keine äquidistanten Abstände auf, sind also (weiterhin) Ordinalniveau. Für welche Interpretation man sich nun entscheidet, liegt im Ermessen des Anwenders. Für uns, so legen wir jetzt fest, besitzt die Spalte „Platz“ weiterhin „nur“ Ordinalniveau. Die Spalte „Verein“ besitzt, wie wir wissen, nur das Nominalniveau. Wie sieht es mit den Spalten „Spiele“, „S“, „U“, „N“, „Diff“ und „Pkt“ aus? Nehmen wir zunächst die Spalte „Spiele“. Der Unterschied zwischen 34 und 34 Punkten ist jeweils exakt gleich groß. Springen wir gleich zur Spalte „Pkt“. Der Unterschied zwischen 81 und 73 Punkten ist genau so groß wie zwischen 48 und 40 Punkten, aber größer als zwischen 31 und 30 Punkten. Die Spalten „Spiele“ und „Pkt“ besitzen also auch ein Intervallniveau. Die Spalte „Tore“ besitzt, nach unserem Dafürhalten, nur das Nominalniveau. Wie es mit den Spalten „S“, „U“, „N“ und „Diff“ aussieht, überlassen wir bis zum nächsten Abschnitt vertrauensvoll der Kompetenz der werten Leserinnen und Leser. Das Zwischenfazit an dieser Stelle lautet: „Verein“ und „Tore“ beschränken sich auf das Nominalniveau. Alle anderen Spalten besitzen neben dem Ordinalniveau auch das Intervallniveau.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Deskriptive Statistik verstehen»

Представляем Вашему вниманию похожие книги на «Deskriptive Statistik verstehen» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Deskriptive Statistik verstehen»

Обсуждение, отзывы о книге «Deskriptive Statistik verstehen» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x