Aiden A. Bruen - Cryptography, Information Theory, and Error-Correction

Здесь есть возможность читать онлайн «Aiden A. Bruen - Cryptography, Information Theory, and Error-Correction» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: unrecognised, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Cryptography, Information Theory, and Error-Correction: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Cryptography, Information Theory, and Error-Correction»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

CRYPTOGRAPHY, INFORMATION THEORY, AND ERROR-CORRECTION
A rich examination of the technologies supporting secure digital information transfers from respected leaders in the field Cryptography, Information Theory, and Error-Correction: A Handbook for the 21ST Century
Cryptography, Information Theory, and Error-Correction

Cryptography, Information Theory, and Error-Correction — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Cryptography, Information Theory, and Error-Correction», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Using encryption for storing messages and files is another important function of encryption in today's society. As an example, we mention the encryption of a file – or even an entire hard drive (or solid state drive) – in a computer so that, if it is set aside (or stolen) an individual other than the owner cannot access the contents. (Apple and Windows both have encryption applications that use XTS‐AES‐128 encryption with a 256‐bit key. Apple's MacOS uses it in FileVault 2, [App18], and Windows 10 version 1511 uses it in their Bitlocker feature, [Win19].) We can fit this into our previous general situation with the owner of the computer playing the role of both Aand B.

We have been silent on how Aand Bget their enciphering and deciphering keys. This is discussed in a later chapter, but will depend on the kind of encryption being used. The two fundamentally different possibilities for cryptography are as follows:

1 Symmetric Cryptography

2 Asymmetric Cryptography, i.e. Public Key Cryptography.

Figure 32Symmetric encryption Recall that as before A Bare the communicating - фото 253

Figure 3.2Symmetric encryption.

Recall that as before A, Bare the communicating entities and Awants to send a secret message картинка 254to B( Figure 3.2). In symmetric encryption, there are three features.

1 The enciphering key used by the transmitter A is equal to the deciphering key used by the receiver B and this key is known only to A and B.

2 The enciphering algorithm, converting the plain text to cipher text, is such that the cipher text can be calculated immediately given and .

3 The deciphering algorithm, converting back to , can be calculated immediately given and .

The security depends on the fact that the secret key картинка 255is known only to Aand B.

Public key cryptography works differently ( Figure 3.3). The procedure is as follows:

1 The enciphering key used by A (or anybody else) to send a message to B is publicly known, and is called the public key of B. However, the deciphering key used by B to decrypt the cipher text is known only to B and is the private key of B. So the two keys are quite different.

2 The enciphering procedure, converting the plain text to cipher text , can be immediately calculated given M and .

3 The deciphering procedure, converting back to M, can be calculated immediately by B using . However, it is not possible for somebody else who is not in possession of to convert back to M in a reasonable amount of time.The security of public key cryptography rests on the assumption that it is not feasible to convert back to M without knowledge of the private key .Thus, in public key cryptography each user B in a network has a public key and a private key , which are supplied by a public key authority (PKA).

Symmetric cryptography (encryption) is also called secret key cryptography (encryption). The security depends, as stated above, on the assumption that only the communicating parties Aand Bknow the (common) key. Note that A, Bcould also denote groups of entities on a network and that Bcan also send a secret message to Ausing their common secret key.

Figure 33Asymmetric or public encryption Historically cryptography meant - фото 256

Figure 3.3Asymmetric or public encryption.

Historically, cryptography meant symmetric cryptography. Nowadays, important symmetric algorithms in use are AESand the One‐Time Padwhich is sometimes derived from a shift register (see Chapter 16).

3.2 Public Key Cryptography and RSA on a Calculator

We now turn to some examples of asymmetric or public key cryptography. First, let us explain RSA, the main public key algorithm. As before, Awants to send a secret message картинка 257to B. For convenience, let us think of картинка 258as being the number 6, say, as in our previous example. We make the encryption more complicated. So instead of saying “add 7,” we say “multiply 6 by itself 7 times” i.e. calculate As an extra complication let us take some number and declare the encryption - фото 259. As an extra complication, let us take some number картинка 260and declare the encryption algorithm to be “multiply 6 by itself 7 times and take the remainder of this number when divided by картинка 261to be the cipher text картинка 262.” As a small working example, let картинка 263. So our cipher text is the remainder of картинка 264upon division by 55. This remainder is easily calculated, using any calculator, as follows:

We want to find the (unique) remainder Cryptography Information Theory and ErrorCorrection - изображение 265that is left over when we divide 279 936 by 55. So we have

(3.5) Cryptography Information Theory and ErrorCorrection - изображение 266

where is one of We are not really interested in the value of we just need - фото 267is one of We are not really interested in the value of we just need Dividing acros - фото 268. We are not really interested in the value of we just need Dividing across by 55 in Eq 35 we get 36 - фото 269: we just need Dividing across by 55 in Eq 35 we get 36 Pushing the divide button - фото 270. Dividing across by 55 in Eq. (3.5), we get

(3.6) Pushing the divide button on the calculator we get 37 This indicates that - фото 271

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Cryptography, Information Theory, and Error-Correction»

Представляем Вашему вниманию похожие книги на «Cryptography, Information Theory, and Error-Correction» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Cryptography, Information Theory, and Error-Correction»

Обсуждение, отзывы о книге «Cryptography, Information Theory, and Error-Correction» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x