Aiden A. Bruen - Cryptography, Information Theory, and Error-Correction

Здесь есть возможность читать онлайн «Aiden A. Bruen - Cryptography, Information Theory, and Error-Correction» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: unrecognised, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Cryptography, Information Theory, and Error-Correction: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Cryptography, Information Theory, and Error-Correction»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

CRYPTOGRAPHY, INFORMATION THEORY, AND ERROR-CORRECTION
A rich examination of the technologies supporting secure digital information transfers from respected leaders in the field Cryptography, Information Theory, and Error-Correction: A Handbook for the 21ST Century
Cryptography, Information Theory, and Error-Correction

Cryptography, Information Theory, and Error-Correction — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Cryptography, Information Theory, and Error-Correction», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

12 2.12 The corresponding cipher text is JCJDUKJ.The initial settings are the following: = (0 15 6 10 14 8 19 17 22 18 11) (1 2 9 13 21 25) (3 4 23 5 24 7 12 16 20) = (0 7 9 4 6 18 23 25 8) (1 17 19) (2 20 10) (3 12) (5 11 13 21) (14 22 15 16 24) = (0 2 4 7 16 17 19 5) (1 6 3 8 21 24 11 13 9 10 25 12 14 15) (18 23 20 22) = (0 4)(1 7)(2 9)(3 16)(5 20)(6 8)(10 19)(11 17)(12 25)(13 18)(14 24)(15 22)(21 23) = (11 18 22 17 19 8 14 10 6 15 0) (25 21 13 9 2 1) (20 16 12 7 24 5 23 4 3) = (8 25 23 18 6 4 9 7 0) (19 17 1) (10 20 2) (12 3) (21 13 11 5) (24 16 15 22 14) = (5 19 17 16 7 4 2 0) (15 14 12 25 10 9 13 11 24 21 8 3 6 1) (22 20 23 18)Also, the initial settings were defined as follows:, , Using the given information, the cipher text was obtained as follows:1st letter: (m)Reaching the reflector, we get Now following the signal back through the rotors, we obtainTherefore, the first cipher text character is J.Now, we must update the rotor settings: .For the remaining characters, proceed through the same process. Remember, when changes from 25 back to 0, update to 8 (this occurs after the fourth cipher text character is computed).

13 2.13 After writing the cipher text on two strips of paper, we obtain the following table:Displacement# of coincidences1420334353667184Here we note that the maximum number of coincidences occurs for a displacement of 6. Therefore, the period is either 3 or 6, because the displacement producing the largest number of coincidences is a scalar multiple of the period.

14 2.14 To complete the problem, we will try a period of 3 first. If it doesn't succeed, we will try the second choice of 6. With our results, we will find the most common letter and assume it deciphers to “e.” If there are ties for the most frequent character, we will investigate each case individually to determine the most probable choice.Starting with the first letter of the keyword, we create a table of cipher text frequencies:The first, fourth, seventh, letters of cipher text areLKXRSXOZBXZDBUYFGROSWDDOOICSDXNSVESKOX.From this, we computeABCDEFGHIJKLM0214111010210NOPQRSTUVWXYZ1500250111502Here we note that the most frequent cipher text letters are O, S, and X. Now, we have to consider each letter to determine which is most likely the key letter. If O deciphers to “e”(yielding a key letter of “K”), then S i, and X n. Looking at Table 2.1, the number of occurrences of “i and “n” in the cipher text are reasonable. Alternatively, if S deciphers to “e” (yielding a key letter of “O”), then O “a” and X “j”. However, 5 occurrences out of 38 letters is far too high for j (the frequency of j is 0.002%). Finally, if X deciphers to “e,” (yielding a key letter of “T”), then O “v” and S “y.” Again, 5 occurrences for each “v” and “y” in 38 letters are far too high to be correct. Therefore, “K” is the most probable key letter.We use the same reasoning for the next two key letters. For the second, fifth, eighth, letters, we compute:ABCDEFGHIJKLM1010323282213NOPQRSTUVWXYZ0100200110410Here we have an overwhelming choice for “e,” namely “I.” Thus, if I deciphers to “e,” we have a key letter of “E.”Similarly, for the third, sixth, nineth, letters, we computeABCDEFGHIJKLM3150024012022NOPQRSTUVWXYZ0051421000011This gives us two likely choices for “e,” although two others are very close. If “C' deciphers to “e,” we have a key letter of “Y.” If this is the case, them G “I,” R “t,” and P “r,” all of which have a reasonable number of occurrences. If, on the other hand, P deciphers to “e,” then the key letter is “L.” This would mean that C “r,” G “v,” and R “g.” However, the number of occurrences of both “v” and “g” are too high to be realistic. Therefore, we arrive at a key letter of “Y,” producing a keyword of “key.”To make sure that 3 is the period, one can use the newly acquired keyword to decipher the message. For long messages, it is nearly impossible that two separate messages would appear out of the same piece of cipher text. Thus, if the first key works, we are done. If not, then the period is likely 6 instead. This problem illustrates the ambiguities one can run into when attempting to break the Vigenère cipher, and serves as a reminder to use the methods outlined here with diligence and care.

15 2.15 Repeat the exact same process as in Problem 2.14, inputting the letters YDDMYU with the same initial settings as before. The resulting output is the message “attack.”

16 2.16 If the book contained typical English text, then the frequencies should be very similar to the table.

Chapter 3 RSA, Key Searches, TLS, and Encrypting Email

Goals, DiscussionThis chapter is important and does not require too much mathematical background. We avoid making essential use of number theory in the text, although it can be used to shorten the calculations. We discuss one of the main public key algorithms, namely RSA, as well as some of its applications to e‐Commerce with Transport Layer Security (TLS) and to the encryption of email.

Public key and symmetric cryptography are discussed as well as the average number of guesses required when searching a key space for the key ( Theorem 3.6). Some cryptographic attacks, both mathematical and real world are discussed here and in Chapter 7.

In Section 3.7, we discuss another important algorithm which straddles the border between symmetric and public‐key exchanges, called the Diffie–Hellman key‐exchange.

In Section 3.3, we denote by Cryptography Information Theory and ErrorCorrection - изображение 151the remainder картинка 152when the positive integer Cryptography Information Theory and ErrorCorrection - изображение 153is divided by the positive integer Cryptography Information Theory and ErrorCorrection - изображение 154. For example, Cryptography Information Theory and ErrorCorrection - изображение 155. Another way of stating this is that Cryptography Information Theory and ErrorCorrection - изображение 156or Cryptography Information Theory and ErrorCorrection - изображение 157. We are working here with the integers картинка 158. This is covered in detail in Chapters 5and 19.

Let us briefly explain the idea. Alice wants to send a secret message to Bob. Bob has chosen a number картинка 159and another number картинка 160(for encryption). The pair картинка 161represents Bob's public key and is listed in a “public key directory.” Alice represents the secret message as a number картинка 162lying between 1 and картинка 163. To encrypt or scramble the message картинка 164, Alice multiplies картинка 165by itself картинка 166times, gets the remainder after dividing by картинка 167, and transmits the result to Bob. The result is called the cipher text картинка 168. An eavesdropper, noting картинка 169, realizes the message itself must be equal to the картинка 170th root of картинка 171, or картинка 172, or картинка 173, or картинка 174for some unknown картинка 175. Eve (the eavesdropper) cannot find картинка 176as there are too many values of картинка 177to try. It is a remarkable fact that if there is just a single value of картинка 178, say картинка 179, such that the картинка 180 root of картинка 181 is a whole number lying between 1 and картинка 182. To see this, let картинка 183be any whole number, i.e. a positive integer not necessarily lying between 1 and Cryptography Information Theory and ErrorCorrection - изображение 184such that Cryptography Information Theory and ErrorCorrection - изображение 185. Then

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Cryptography, Information Theory, and Error-Correction»

Представляем Вашему вниманию похожие книги на «Cryptography, Information Theory, and Error-Correction» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Cryptography, Information Theory, and Error-Correction»

Обсуждение, отзывы о книге «Cryptography, Information Theory, and Error-Correction» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x